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1. Proof of Proposition 1
Let M : R → [0, a) denote the modulo operator defined by

M(y) = y mod a.

Consider X = M(Y ), we have then
Xi,j = Yi,j mod a

or equivalently,
Xi,j = Yi,j + a ·Ri,j , Ri,j ∈ Z. (1)

Applying the partial difference along x-axis on both sides of the Eq. (1), we have

∇xXi,j = ∇xYi,j + a · ∇xRi,j , (2)

where R ∈ ZH×W is an integer matrix.
Next, for any point satisfying ∥∇Yi,j∥∞ < a/2, we have
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Notice that ∇xRi,j is an integer since R is an integer matrix. We have then
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[
by Eq. (3)

]
= ∇xYi,j .

The same argument is also applicable to ∇yXi,j . Therefore, we have that

M̃(∇Xi,j) = ∇Yi,j , if ∥∇Yi,j∥∞ = max{|∇xYi,j |, |∇yYi,j |} < a/2. (4)

The proof is done.
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Figure 1. Qualitative results of the compared methods on two modulo samples of real-RGB dataset.

2. More Visual Results on Real-RGB Dataset
This section provides additional qualitative comparison of our DUN and other methods on the real-RGB dataset, as shown
in Fig. 1. From the figure, PnP-UA fails to recover accurate illumination or color, while the method Santos et al. produces
modulo patterns on the road crossing (upper case) and in the sky (bottom case). UFormer shows improvement but still suffers
from some unnatural distortions. UnModNet visually surpasses the aforementioned methods but introduces overall darkness
or moderate artifact. In contrast, our DUN provides more authentic visual results for both samples.

3. Visual Evaluation on Real-sensor Dataset
We evaluate our DUN, PnP-UA and UnModNet which are specifically designed for modulo HDR reconstruction, on the
sample of real-sensor dataset [2]. This dataset collects 8-bit grayscale modulo images. See the visual comparison in Fig. 2.
Similar to the results in real-RGB dataset, PnP-UA exhibits significant illumination discrepancy in its reconstruction. While
both UnModNet and our method produce visually plausible results, our DUN demonstrates better visual quality with fewer
artifact (e.g., modulo pattern on the spherical structure in the result of UnModNet).
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Figure 2. Qualitative results of the compared methods on the modulo sample of real-sensor dataset.

4. Evaluation on Noisy Modulo Image Datasets
We evaluate our DUN and other compared methods under noisy scenarios. Following the same pipeline described in the
manuscript, we generate 4,000 HDR ground truth images from 400 randomly-selected images in the dataset. Their noisy
modulo versions are synthesized via [1]: X = M(Y + N), where N ∈ RH×W×C denotes the noise. Specifically, we
introduce additive white Gaussian noise (AWGN) with SNR levels of 20 dB and 30 dB to create two datasets for training,
respectively. For test, the remaining images are processed similarly to generate HDR images and their corrupted modulo
counterparts with the same SNR levels.

The quantitative performance results of the compared methods are listed in Tab. 1. Our DUN ranks the top across all met-
rics in both noisy settings. The visual comparison, shown in Fig. 3, further confirms the effectiveness of our method, where



Table 1. Quantitative performance results of the compared methods for noisy modulo HDR. The Best results are marked in Bold.

Method
SNR = 20 dB SNR = 30 dB

NRMSE(%) PSNR(dB) SSIM MS-SSIM NRMSE(%) PSNR(dB) SSIM MS-SSIM

MRF 45.46 24.76 0.38 0.54 45.42 24.78 0.38 0.54
PnP-UA 31.63 29.04 0.34 0.50 28.76 29.25 0.34 0.50

UnModNet 12.97 30.81 0.63 0.80 10.54 32.96 0.79 0.88
ExpandNet 12.80 22.50 0.71 0.71 10.28 23.44 0.79 0.77
Santos et al. 9.75 36.26 0.90 0.91 9.52 37.35 0.94 0.95

UFormer 8.43 40.44 0.98 0.97 7.53 42.32 0.98 0.98
Ours 6.71 40.52 0.98 0.97 5.96 42.45 0.98 0.98
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Figure 3. Visual results of compared methods on two modulo samples with different noise levels (Top: SNR=30dB; Bottom: SNR=20dB).

our DUN consistently outperforms other methods in both samples and provides noise-resistant reconstructions with details.
It is unsurprising since our superiority stems from the adaptive subtraction mechanism by an auxiliary variable V , which
simultaneously compensates for outlier-induced residuals and eliminates the noises from corrupted gradients. Although the
performance gaps between our method and UFormer are narrower compared to that of noise-free scenario, our DUN main-
tains much smaller parameter count and FLOPs compared to UFormer, demonstrating that our DUN delivers competitive
performance with significantly higher computational efficiency. In contrast, UnModNet suffers notable performance drops
compared to that of clean dataset (e.g., 32.96 dB v.s. 40.42 dB). This is mainly because its framework of predicting the
rollover counts is incapable of removing the noise.

5. More Implementation Details of the DUN
Our DUN adopts a three-phase (K = 3) unfolding architecture with the step number in AGD set as N = 10.
Details about the UNetY : The first convolutional layer in the UNetY generates 16-channel feature maps, followed by
progressive channel expansion to 32, 64, 128, and 256 channels as the spatial resolution halves through strided convolution.
A decoder with bilinear upsampling layers generates the features with consistent channel numbers as those of the down-
scaling encoder.
Details about the spiking neuron-based module: In the spiking neuron-based module, we employs four spiking neurons
(L = 4) for the prediction of binary map for Vk. The synaptic weight applied to the output of previous neuron (i.e., Wl ·O(t)

l−1)
is implemented via a convolutional layer followed by PReLU activation. The hidden channel numbers and kernel sizes of all
convolutional layers in this module are set to 16 and 3× 3, respectively.
Configuration of parameters: The learnable step size ηk for gradient descent and thresholding value τ are initially set to
0.1 and 0.5, respectively. The learnable weight wk for summation in UNetY is initialized as 0.1× 3k−1 for the kth phase of
DUN. The parameters κ and p remain constant values of 0.5 and 1 throughout training, respectively.



6. Inference Flow of the DUN
Let SNM denote the spiking neuron-based module, the inference flow of our proposed DUN is formulated in algorithm 1.

Algorithm 1 Inference flow of the DUN.

Require: X: modulo image
Ensure: YK : recovered HDR image

1: Y0 = 2BI , V0 = 0
2: for k = 1 to K do
3: Q

(0)
k = P

(0)
k = Yk−1, β(0) = 1

4: for n = 1 to N do
5: Q

(n)
k = P

(n−1)
k + ηkGP

(
∇P

(n−1)
k − (M̃(∇X)− Vk−1)

)
6: β(n)=

(
1 +

√
1 + 4β(n−1) · β(n−1)
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/2

7: P
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β(n) (Q
(n)
k −Q
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8: end for
9: Yk = UNetY (Q

(N)
k ,X)

10: Ek = M̃(∇X)−∇Yk

11: Vk = SNM(E1, · · · ,Ek)
12: end for
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