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SAMora: Enhancing SAM through Hierarchical Self-Supervised
Pre-Training for Medical Images

Supplementary Material

Table 7. Stage1 Setting.

Config image-level patch-level pixel-level

Optimizer LARS AdamW AdamW
Base learning rate 0.075 1.5e-4 1e-4

Batch size 512 512 512
Weight decay 1e-4 0.05 0.05

Warmup period 30 30 10
epoch nums 80 60 30

In this supplementary material, we first provide more001
implementation details for training strategies and datasets002
(Sec. A). Then, we conduct more additional ablation stud-003
ies (Sec. B) to validate the effectiveness of each component004
in our proposed method. Finally, we discuss SAMora’s lim-005
itations and potential directions for future work (Sec. C).006

A. Implementation Details007

A.1. Training strategy008

We provide the training strategy and hyperparameter set-009
tings as supplementary material.010

In Stage 1, we perform pretraining for image-level,011
patch-level, and pixel-level tasks using different models:012
SimCLRv2 (ResNet50 (2X+SK)) for the image-level task,013
MAE (ViT-Large) for the patch-level task, and a denoising014
model (U-net model) for the pixel-level task. As shown015
in Table 6, for image-level task, We adopt warmup dur-016
ing training, The learning rate is linearly increased for the017
first 5% of epochs, and then decayed with a cosine decay018
schedule where the weight decay is 1e−4, followed by Sim-019
CLRv2 [7]. For the patch-level and pixel-level tasks, we use020
the AdamW optimizer. The optimizer momentum is set to021
0.9 and 0.95 for the patch-level task, and 0.9 and 0.99 for022
the pixel-level task, respectively.023

The training loss is a combination of Dice loss and Mean024
Squared Error (MSE) loss. As indicated in Tab. 7, the025
weights for these losses are set to 0.9 for Dice loss and 0.1026
for MSE loss. In our two-stage hierarchical structure, each027
stage applies a weighted loss, controlled by a parameter028
that gradually decreases through exponential decay, starting029
from 0.4 and reaching 0 over 300 epochs.030

In Tab. 8, we present the settings for Stage 2 across vari-031
ous backbones. For SAMora, SAMed (ViT-B) serves as the032
backbone. The loss weights are assigned as 0.2 for cross-033
entropy and 0.8 for Dice loss. For the warmup configura-034
tion, the initial learning rate is set to 0.005, with a warmup035
period of 250 steps, and the total number of iterations is036

Table 8. Stage2 Setting.

Config SAMora SAMora-2 H-SAMora

Optimizer AdamW AdamW AdamW
Base learning rate 5e-3 5e-3 2.5e-3

Batch size 32 32 32
Weight decay 0.1 0.1 0.1

Warmup period 25 25 25
epoch nums 20 25 30

18,600. Notably, the learning rate adjustment strategy is 037
described as follows: 038

lr =

{
T Ilr

WP , T <= WP,
Ilr

(
1− T−WP

MI

)
, T > WP.

(1) 039

Where Ilr represents the initial learning rate, while T , 040
WP , and MI denote the training iterations, warmup pe- 041
riod, and maximum iterations, respectively. 042

SAMora-2 uses SAM2 (hiera-base-plus) as the back- 043
bone, with the only difference being that the number of 044
epochs is set to 25. All other training parameters remain the 045
same as those of SAMora. The configuration of H-SAMora 046
follows the guidelines of H-SAM [9]. 047

A.2. Additional datasets information 048

We detail the dataset settings. Firstly, the unlabeled data 049
that we use to pre-train is sampled from the Amos22 [14], 050
LiTS [4], KiTS [11], and Decathlon Challenge [1] datasets. 051

• AMOS22 [14] is a large-scale dataset that provides 500 052
CT and 100 MRI scans with voxel-level annotations for 053
15 abdominal organs, supporting both CT-only and cross- 054
modality segmentation tasks across diverse clinical sce- 055
narios. 056

• The LiTS dataset [4] focuses on liver and liver tumor 057
segmentation. It comprises 201 abdominal CT volumes, 058
helping to tackle challenges such as lesion variability and 059
segmentation complexity, making it a widely used bench- 060
mark for medical imaging algorithms. 061

• The KiTS dataset [11] emphasizes kidney and kidney tu- 062
mor segmentation. Its 2019 release, KiTS19, includes 063
300 CT cases, collected from patients who underwent 064
nephrectomy, and is designed to support automated kid- 065
ney and tumor segmentation research through compre- 066
hensive annotations. 067

• The Decathlon Challenge dataset [1] offers a broad range 068
of segmentation tasks across multiple organs, aiming to 069
advance generalization in medical image analysis. It 070
provides an opportunity to test algorithms on various 071

1



ICCV
#9152

ICCV
#9152

ICCV 2025 Submission #9152. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 9. Ablation study on rank size of LoRA layers.

Method Rank = 1 Rank = 4 Rank = 16

SAMed 69.12 75.57 69.03
SAMora (Ours) 75.26 79.41 76.88

SAMed-2 69.89 76.68 73.54
SAMora-2 (Ours) 75.53 80.24 76.12

H-SAM 72.14 80.35 77.14
H-SAMora (Ours) 78.91 84.34 80.57

anatomical regions and imaging scenarios, making it ideal072
for benchmarking segmentation models across different073
tasks.074

In Stage 2, we utilize the Synapse dataset from the MIC-075
CAI 2015 Multi-Atlas Abdomen Labeling Challenge. For076
the fully supervised training setup, we adhere to the H-SAM077
framework to evaluate the segmentation performance across078
eight abdominal organs: the aorta, gallbladder, spleen, left079
kidney, right kidney, liver, pancreas, and stomach.080

In addition to the fully supervised setup, we also im-081
plement a few-shot learning scenario. For this, we adopt082
a slice-based data selection strategy, randomly sampling083
10% of the training data (221 slices) from different subjects084
within the complete training set, which consists of 2,212085
axial slices.086

A.3. Preprocessing and augmentation strategies for087
training datasets088

To improve the generalization ability of the model and en-089
hance the robustness of training, we follow the prepro-090
cessing and data augmentation strategies adopted in Tran-091
sUNet [6], SAMed [27], H-SAM [9].092

The original medical images are first resampled to a uni-093
form spatial resolution to mitigate variations caused by dif-094
ferent imaging protocols. Following TransUNet, for 3D095
volumetric data, each volume is processed in a slice-by-096
slice manner, where the slices are extracted along the ax-097
ial plane. The extracted 2D slices are then normalized to098
zero mean and unit variance to ensure consistent intensity099
distributions across different datasets.100

To prevent overfitting and improve the diversity of train-101
ing samples, we employ several data augmentation tech-102
niques:103
• Random rotation: Each image slice is randomly rotated104

by an angle within [−15◦, 15◦] to simulate different ori-105
entations.106

• Random flipping: Horizontal and vertical flipping are107
applied with a probability of 0.5 to introduce spatial vari-108
ability.109

• Scaling: The images are randomly scaled within the110
range [0.9, 1.1] to enhance robustness to size variations.111

• Elastic deformation: Spatially elastic transformations112
are applied to simulate realistic deformations in medical113

Table 10. Effectiveness of HL-Attn compared to HCAT.

Model Mean Dice(%) Inference Time(s)

HCAT 84.40 4.2
HL-Attn (ours) 84.34 3.1

images. 114
• Contrast and brightness adjustment: To account for 115

variations in image acquisition settings, we randomly ad- 116
just the contrast and brightness of images. 117

These augmentation strategies ensure that the model learns 118
from diverse image distributions while preserving anatomi- 119
cal structures. 120

All preprocessing and augmentation operations are im- 121
plemented using standard deep learning libraries, and ap- 122
plied online during training to maximize variability in train- 123
ing samples. 124

B. Additional analysis 125

B.1. Ablation study on the LoRA component 126

We also conduct our additional ablation studies on 10% 127
Synapse dataset. In the Tab. 9, we compare the effective- 128
ness of the layers of LoRA component among these models 129
and their variants. From the result, we found that all models 130
and their variants, the best performance is achieved when 131
the rank increases to 4, while the performance drops when 132
the rank increases to 16. 133

Furthermore, the model incorporating multiple LoRA 134
experts exhibits a smaller performance gap compared to the 135
original model at different rank values, suggesting that the 136
proposed mechanisms enhance the model’s robustness to 137
variations in the rank parameter. 138

B.2. Additional study on the HL-Attn 139

Our work focuses on proposing an innovative multi-level 140
framework that integrates existing methods in a novel way 141
to address specific challenges in medical image analysis. 142
While we build upon widely recognized techniques like 143
MAE and SimCLRv2, leveraging strong foundations is 144
common and necessary in advancing research. The nov- 145
elty of HL-Attn lies in the hierarchical design and effective 146
combination of these methods, with a focus on simplicity 147
and adaptability. Even with a straightforward fusion strat- 148
egy, our approach demonstrates significant gains. To fur- 149
ther validate the effectiveness of our method, we conducted 150
experiments on the hierarchical cross-attention transformer 151
(HCAT). The results (Tab. 10), demonstrate that HL-Attn 152
achieves comparable mean Dice scores with a reduction 153
in inference time, highlighting the efficiency of our frame- 154
work. 155
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Table 11. Full Effectiveness of Different Multiple LoRA experts Fusion Strategies
Image-level LoRA Patch-level LoRA Pixel-level LoRA Fusion Module 10% Synapse 5% LA 7.5% PROMISE12

✓ ✓ ✓ LAC [26] 82.41 90.01 88.97
✓ ✓ ✓ MOLE [21] 83.91 91.59 89.44
✓ ✓ ✓ LoRAHub [12] 81.07 88.31 87.43
✓ ✓ ✓ HL-Attn (ours) 84.34 92.46 90.14

1 1 2 HL-Attn (ours) 84.21 92.10 89.95
1 2 1 HL-Attn (ours) 83.86 91.80 89.72
2 1 1 HL-Attn (ours) 84.34 92.46 90.14

B.3. Effectiveness of Different Multiple LoRA ex-156
perts Fusion Strategies157

We have further supplement our experiments on the LA and158
PROMISE12 datasets to provide a more comprehensive as-159
sessment of SAMora’s segmentation performance. The re-160
sults in Tab. 11 show that HL-Attn outperforms other fusion161
strategies across both datasets, achieving the highest mean162
Dice scores. This demonstrates the effectiveness of our163
proposed method in enhancing segmentation performance164
across different medical imaging tasks.165

B.4. Complementarity of multiple LoRAs166

Furthermore, the Fig. 6 illustrates the complementarity167
across the three LoRA levels. It shows that individual lev-168
els fail to capture certain structural details, while the fu-169
sion image effectively integrates these features, resulting in170
improved overall accuracy. This highlights how the hier-171
archical fusion leverages distinct strengths from each level.172
These visual results demonstrate that the modifications to173
the model architecture have successfully guided the net-174
work to concentrate on the most relevant features.175

B.5. Clarification of Training Time176

The CPT process can be seen as an equivalent fine-tuning177
phase for SimCLRv2 and MAE. For CPT, we sampled178
100,000 images from datasets like AMOS and employed a179
comprehensive pre-training process integrating SimCLRv2180
and MAE to effectively learn hierarchical features. As181
shown in the table, models with shorter CPT durations182
demonstrate that SAMora can balance efficiency and per-183
formance. H-SAMora-T1, which excludes CPT and per-184
forms minimal pre-training, achieves a Mean Dice of 80.72,185
slightly outperforming H-SAM. H-SAMora-T2, with a re-186
duced CPT duration of 0.8 hours, improves further to 80.97.187
The full CPT version, H-SAMora, achieves the highest188
Mean Dice of 84.34, highlighting the benefits of a com-189
plete pre-training process. These results confirm SAMora’s190
adaptability to different resource constraints, as even shorter191
CPT durations deliver significant improvements, while the192
default CPT duration maximizes performance and demon-193
strates the framework’s full potential. The detailed training194
configurations and results will be presented in the revised195

manuscript. 196

Table 12. Results of different training time of CPT

Model CPT Pre-Training Fine-Tuning Mean Dice

H-SAM - - 2 80.35
H-SAMora-T1 - 1.8 0.1 80.72
H-SAMora-T2 0.8 1.3 0.1 80.97

H-SAMora 12.7 13.4 0.1 84.34

B.6. Statistical validation 197

To address this concern, we conducted statistical validation 198
to confirm the significance of our performance improve- 199
ments on the Synapse dataset. We performed a paired t-test 200
on the mean Dice scores of SAMora, SAMed, SAMora- 201
2, SAMed-2, H-SAMora, and H-SAM. The results show 202
highly significant differences, such as H-SAMora versus H- 203
SAM with a p-value of 1.7×10−8 and a 95% confidence in- 204
terval of [0.0329, 0.0407]. Similarly, SAMora outperforms 205
SAMed with a p-value of 0.0167 and SAMora-2 outper- 206
forms SAMed-2 with a p-value of 0.0281. These statistical 207
tests validate the robustness and significance of the reported 208
improvements, and the detailed analysis will be included in 209
the revised manuscript. 210

Although SAMora performs well in most medical im- 211
age segmentation tasks, its performance may degrade when 212
handling noisy or low-quality images. Future research 213
could focus on improving the model’s robustness to such 214
challenging image quality issues. 215

B.7. Complete Experimental Results 216

This section presents the full experimental results only par- 217
tially included in the main text, providing a more compre- 218
hensive evaluation of the proposed method. Table 13 of- 219
fers a detailed performance comparison of SAM and SAM2 220
variants on the Synapse dataset, where bold numbers indi- 221
cate the best performance. Table 14 extends the compari- 222
son by benchmarking various SAM variants against multi- 223
ple semi-supervised methods across different datasets. Ad- 224
ditionally, Table 15 provides a complete ablation analysis of 225
multiple LoRA experts on the 10% Synapse dataset, where 226
”Scratch” refers to models trained from scratch. At the 227
same time, ”T-S” denotes training using a teacher-student 228
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Figure 6. Complementarity of multiple LoRAs.

Fusion ImageImage LevelPatch LevelPixel Level

Weak AttnWeak Attn
Weak Attn

Lack
Weak Attn

Table 13. Full Performance Comparison of SAM and SAM2 Variants on Synapse Dataset. Bold numbers indicate the best perfor-
mance. By default, we utilize SAM as our base model. † indicates H-SAM based model; ∗ indicates SAM2 based model.

Training
Set Method Spleen Right

Kidney
Left

Kidney Gallbladder Liver Stomach Aorta Pancreas Mean Dice ↑ HD ↓

10%

AutoSAM [15] 68.80 77.44 76.53 24.87 88.06 52.70 75.19 34.58 55.69 31.67
SAM Adapter [8] 72.42 68.38 66.77 22.38 89.69 53.15 66.74 26.76 58.28 54.22

SAMed [27] 85.82 82.25 82.62 63.15 92.72 67.20 78.72 52.12 75.57 23.02
SAMora (Ours) 88.04 83.41 86.07 67.33 94.27 69.20 82.85 64.13 79.41 15.68

SAMed-2⋆ 86.61 83.01 84.56 61.51 91.07 69.02 77.99 52.09 76.68 18.93
SAMora-2⋆ (Ours) 87.81 85.73 86.35 68.30 93.78 75.24 81.12 63.62 80.24 16.27

H-SAM [9] 90.21 84.16 85.65 70.70 94.29 76.10 85.54 56.17 80.35 15.54
H-SAMora† (Ours) 92.46 85.13 86.71 73.15 95.82 81.85 88.56 72.72 84.34 11.63

Fully
Supervised

TransUNet [6] 81.87 85.08 77.02 63.16 94.08 75.62 87.23 55.86 77.49 31.69
UNETR [10] 85.60 85.00 84.52 56.30 94.57 70.46 89.80 60.47 78.35 18.59
SwinUnet [5] 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60 79.13 21.55

TransDeepLab [2] 86.04 69.16 84.08 79.88 93.53 61.19 89.00 78.40 80.16 21.25
DAE-Former [3] 88.96 72.30 86.08 80.88 94.98 65.12 91.94 79.19 82.43 17.46

MERIT [19] 92.01 84.85 87.79 74.40 95.26 85.38 87.71 71.81 84.90 13.22
nnFormer [28] 86.57 90.51 86.25 70.17 96.84 86.83 92.04 83.35 86.57 10.63

UNETR++ [20] 87.54 95.77 87.18 71.25 96.42 86.01 92.52 81.10 87.22 7.53

SAM Adapter [8] 83.68 79.00 79.02 57.49 92.67 69.48 77.93 43.07 72.80 33.08
SAM3D [24] 84.29 85.64 86.31 49.81 95.42 76.11 89.57 69.32 79.56 17.87
SAMed [27] 87.77 69.11 80.45 79.95 94.80 72.17 88.72 82.06 81.88 20.64

SAMora (Ours) 89.27 74.05 81.04 81.51 94.97 74.53 88.87 82.42 83.33 14.57

SAMed-2⋆ 88.63 68.63 81.22 80.33 95.18 71.00 87.63 81.93 82.12 12.76
SAMora-2⋆ (Ours) 91.78 75.85 82.02 83.52 95.49 75.11 87.11 82.26 84.14 10.28

H-SAM [9] 93.34 89.93 91.88 73.49 95.72 87.10 89.38 71.11 86.49 8.18
H-SAMora† (Ours) 94.62 91.45 93.00 76.55 96.51 89.95 89.55 77.09 88.59 7.09

framework. These tables collectively reinforce the find-229
ings and conclusions drawn in the main text, offering more230
profound insights into the effectiveness of the proposed ap-231
proach.232

C. Limitation and Future Work233

Despite the promising results of SAMora, several limita-234
tions need to be addressed in future research.235

While SAMora reduces the reliance on labeled data236

through self-supervised learning, it still requires some la- 237
beled data for fine-tuning. Therefore, further exploration 238
of fully unsupervised data is needed. On the other hand, 239
we observe that weakly labeled data, compared to fully la- 240
beled data, has been widely applied in research due to its 241
lower cost and reduced need for manual annotation, which 242
makes it more scalable and practical in real-world appli- 243
cations [16, 18]. Consequently, future work will explore 244
integrating weakly labeled data to enhance SAMora’s per- 245
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Table 14. Full Comparison of SAM Variants against Semi-
Supervised Methods across Various Datasets

Method 10%
Synapse

5%
LA

7.5%
PROMISE12

nnUnet [13] - 64.02 84.22
UA-MT [25] - 82.26 65.05
SS-Net [23] 56.74 86.33 73.19
MC-Net [22] 61.20 83.59 72.66

DTC [17] - 81.25 63.44

AutoSAM [15] 55.69 74.73 68.40
SAM Adapter [8] 58.28 82.79 75.45

SAMed [27] 75.57 87.72 86.00
SAMora (Ours) 79.41 90.13 88.44

SAMed-2 76.68 87.91 86.50
SAMora-2 (Ours) 80.24 91.04 89.27

H-SAM [9] 80.35 89.22 87.27
H-SAMora (Ours) 84.34 92.46 90.14

Table 15. Full Ablation Analysis of Multiple LoRA experts on
10% Synapse. “Scratch” means the model is trained from scratch,
while “T-S” indicates the model is trained by the Teacher-Student
framework

Image-level
LoRA

Patch-level
LoRA

Pixel-level
LoRA Model Mean Dice

(%)

Scratch ✗ ✗ SAMora 77.20
T-S (w/o CPT) ✗ ✗ SAMora 77.31
T-S (w/ CPT) ✗ ✗ SAMora 78.03

Scratch ✗ ✗ H-SAMora 82.09
T-S (w/o CPT) ✗ ✗ H-SAMora 82.17
T-S (w/ CPT) ✗ ✗ H-SAMora 82.65

✗ Scratch ✗ SAMora 76.54
✗ T-S (w/o CPT) ✗ SAMora 77.19
✗ T-S (w/ CPT) ✗ SAMora 78.81
✗ Scratch ✗ H-SAMora 81.67
✗ T-S (w/o CPT) ✗ H-SAMora 82.04
✗ T-S (w/ CPT) ✗ H-SAMora 83.02

✗ ✗ Scratch SAMora 76.97
✗ ✗ Scratch H-SAMora 81.58

formance, allowing it to better generalize across a broader246
range of medical image segmentation tasks.247
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