
SANA-Sprint: One-Step Diffusion with Continuous-Time Consistency Distillation

Supplementary Material

A. Pseudo Code for Training-Free Transformation from Flow to Trigflow
In this section, we provide a concise implementation of the transformation from a trained flow matching model to a TrigFlow
model without requiring additional training. This transformation is based on the theoretical equivalence established in Ap-
pendix D. The core idea is to first convert the TrigFlow timestep tTrig to its corresponding flow matching timestep tFM. Then,
the input feature xTrig is scaled accordingly to obtain xFM. The output of the flow matching model is then transformed using a
linear combination to produce the final TrigFlow output. The following pseudo code implements this transformation efficiently,
ensuring consistency between the two formulations.! "

1 class TrigFlowModel(FlowMatchingModel):
2 def forward(self, x_trig, t_trig, c):
3 t_fm = torch.sin(t_trig) / (torch.cos(t_trig) + torch.sin(t_trig))
4 x_fm = x_trig * torch.sqrt(t_fm**2 + (1 - t_fm)**2)
5

6 fm_model_out = super().forward(x_fm, t_fm, c)
7 trig_model_out = ((1 - 2 * t_fm) * x_fm + (1 - 2 * t_fm + 2 * t_fm**2) *

fm_model_out) / torch.sqrt(t_fm**2 + (1 - t_fm)**2)
8

9 return trig_model_out# $
B. Transformation Algorithm
We present an algorithm for training-free transformation from a flow matching model to its TrigFlow counterpart. Given
a noisy sample, its corresponding TrigFlow timestep, and a pre-trained flow matching model, the algorithm computes the
equivalent flow matching timestep, rescales the input, and applies a deterministic transformation to obtain the TrigFlow output.
The detailed procedure is outlined in Algorithm 1.

Algorithm 1 Training-Free Transformation to TrigFlow

1: Input: Noisy data xt,Trig

ωd
, timestep tTrig, condition y, flow matching model vω(xt,FM, tFM, y)

2: Compute tFM from tTrig via tFM = sin (tTrig)
sin (tTrig)+cos (tTrig)

3: Compute xt,FM from xt,Trig via xt,FM = xt,Trig

ωd
·
√
t
2
FM + (1→ tFM)2

4: Evaluate vω(xt,FM, tFM, y)

5: Transform the model output via F̂ω

(
xt,Trig

ωd
, tTrig,y

)
= 1→

t2FM+(1→tFM)2

[
(1↑ 2tFM)xt,FM + (1↑ 2tFM + 2t2FM)vω(xt,FM, tFM,y)

]

6: Output: Transformed result

C. Training Algorithm of SANA-Sprint
In this section, we present the detailed training algorithm for SANA-Sprint. To emphasize the differences from the standard
sCM training algorithm, we highlight the modified steps in light blue. The following algorithm outlines the complete training
procedure, including the key transformations and parameter updates specific to SANA-Sprint.

D. Proof of Proposition 3.1
Before presenting the formal proof, we first provide some context to understand the necessity of the transformation. In
score-based generative models such as diffusion, flow matching, and TrigFlow, denoising is typically performed under certain
conditions of data scales and signal-to-noise ratios (SNRs) that match the training setup. However, directly applying flow
matching to denoise data generated by TrigFlow is not feasible due to mismatches in time parameterization, SNR, and output

Algorithm 2 Training Algorithm of SANA-Sprint
1: Input: dataset D with std. ωd = 0.5, pretrained flow model F pretrain with parameter ωpretrain, student model F ε,

discriminator head Dε , weighting wϑ, learning rate ε, generator distribution (Pmean, G, Pstd, G), discriminator distribution
(Pmean, D, Pstd, D), constant c, warmup iteration H , max-time weighting p, condition y.

2: Init: transform F pretrain and F ε to TrigFlow model using Algorithm 1, init student model and discriminator backbone
with ωpretrain, Iters ↑ 0.

3: repeat
4: update discriminator ε:
5: x0 ↓ D, z ↓ N (0,ω2

dI), ϑ ↓ N (Pmean, G, P
2
std, G), t ↑ arctan(e

ω

ωd
)

6: if p > 0, ϖ ↓ U[0, 1], t ↑ ϑ
2 if ϖ < p

7: xt ↑ cos(t)x0 + sin(t)z, x̂
f
ω→

0 ↑ fω→(xt, t,y)
8: ϑ ↓ N (Pmean, D, P

2
std, D), s ↑ arctan(e

ω

ωd
)

9: xs ↑ cos(s)x0 + sin(s)z, x̂
f
ω→

s ↑ cos(s)x̂
f
ω→

0 + sin(s)z

10: LD
adv(ω) ↓ Ex0,s

[∑
k ReLU

(
1↑Dε,k(F ωpre,k(xs, s,y))

)]
+ Ex0,s,t

[∑
k ReLU

(
1 +Dε,k(F ωpre,k(x̂

f
ω→

s , s,y))
)]

11: ε ↑ ε → ε↔εLD
adv(ε) ϱ Discriminator step

12: Iters ↑ Iters + 1
13: update student model ω and weighting ϑ:
14: x0 ↓ D, z ↓ N (0,ω2

dI), ϑ ↓ N (Pmean, G, P
2
std, G), t ↑ arctan(e

ω

ωd
)

15: xt ↑ cos(t)x0 + sin(t)z
16: dxt

dt ↑ ωdF pretrain, cfg(
xt
ωd

, t)
17: r ↑ min(1, Iters/H) ϱ Tangent warmup
18: g ↑ → cos2(t)(ωdFω→ → dxt

dt)→ r · cos(t) sin(t)(xt + ωd
dF

ω→
dt) ϱ JVP rearrangement

19: g ↑ g/(↗g↗+ c) ϱ Tangent normalization
20: L(ω,ϑ) ↑ ewε(t)

D ↗Fω(
xt
ωd

, t)→ Fω→(xt
ωd

, t)→ g↗22 → wϑ(t) ϱ sCM loss
21: if p > 0, ϖ ↓ U[0, 1], t ↑ ϑ

2 if ϖ < p

22: xt ↑ cos(t)x0 + sin(t)z, x̂fω
0 ↑ fω(xt, t,y)

23: x̂fω
s ↑ cos(s)x̂fω

0 + sin(s)z

24: L(ω,ϑ) ↑ L(ω,ϑ)→ Ex0,s,t

[∑
k Dε,k(F ωpre,k(x̂

fω
s , s,y))

]
ϱ GAN loss

25: (ω,ϑ) ↑ (ω,ϑ)→ ε↔ε,ϖL(ω,ϑ) ϱ Generator step
26: Iters ↑ Iters + 1
27: until convergence

necessitating explicit transformations to align the input and output between the two models. The following proof provides the
explicit transformation required to connect the TrigFlow-scheduled data to the flow-matching framework.

Proof. Under the TrigFlow framework, the noisy input sample is given by

xt,Trig

ωd
= cos(tTrig)

x0

ωd
+ sin(tTrig)

z

ωd
. (13)

Since both x0 and z originally have a standard deviation of ωd, we absorb ωd into these variables so that they are normalized
to have a standard deviation of 1. This normalization aligns with the conventions used in flow matching models. Note that the
signal-to-noise ratios (SNRs) for flow matching models and TrigFlow models are given by

SNR(tFM) = (
1→ tFM

tFM
)2, SNR(tTrig) = (

cos(tTrig)

sin(tTrig)
)2 = (

1

tan(tTrig)
)2. (14)

To ensure an equivalent SNR under the flow matching framework, we seek the corresponding time tFM that satisfies:

(
1→ tFM

tFM
)2 = (

1

tan(tTrig)
)2. (15)

Solving this equation, we obtain the relationship between tFM and tTrig:

tFM =
sin (tTrig)

sin (tTrig) + cos (tTrig)
, tTrig = arctan (

tFM

1→ tFM
). (16)

Under this transformation, the SNRs of xt,FM and xt,Trig remain equal; however, their scales differ due to the following
formulations:

xt,FM = (1→ tFM)x0 + tFMz, xt,Trig = cos(tTrig)x0 + sin(tTrig)z, (17)

Since (1→ tFM)2 + t
2
FM is generally not equal to cos2(tTrig) + sin2(tTrig) = 1 (except when tFM = 0 or 1), a scale adjustment

is needed. To align their scales, we introduce a scale factor function ς(tFM) that satisfies

ς(tFM) · cos(tTrig) = (1→ tFM), and ς(tFM) · sin(tTrig) = tFM, (18)

Therefore, the scale factor is determined as follows

ς(tFM) =
1→ tFM

cos(arctan (tFM
1→tFM

))
=

tFM

sin(arctan (tFM
1→tFM

))
=

√
t
2
FM + (1→ tFM)2. (19)

The transformed xt,Trig follows the same distribution as the flow matching model’s training distribution, achieving our desired
objective. Next, we aim to determine the optimal estimator for the TrigFlow model Fω, given vω(xt,FM, tFM,y). We first
consider an ideal scenario where the model’s capacity is sufficiently large. In this case, the flow matching model reaches its
optimal solution:

v↑(xt,FM, tFM,y) = E[z → x0|xtFM ,y], (20)

as the conditional expectation minimizes the mean squared error (MSE) loss. Similarly, the optimal solution of the TrigFlow
model is given by

F ↑(xt,Trig, tTrig,y) = E[cos (tTrig)z → sin (tTrig)x0|xtTrig ,y]. (21)

Noting that

cos (tTrig) =
1→ tFM√

t
2
FM + (1→ tFM)2

, sin (tTrig) =
tFM√

t
2
FM + (1→ tFM)2

, (22)

we leverage the linearity of conditional expectation to derive

1→ 2tFM√
t
2
FM + (1→ tFM)2

· xtFM +
1→ 2tFM + 2t2FM√
t
2
FM + (1→ tFM)2

E[z → x0|xtFM ,y]

=
1→ 2tFM√

t
2
FM + (1→ tFM)2

E[(1→ tFM) · x0 + tFM · z|xtFM ,y] +
1→ 2tFM + 2t2FM√
t
2
FM + (1→ tFM)2

E[z → x0|xtFM ,y]

=E[1→ tFM√
t
2
FM + (1→ tFM)2

z → tFM√
t
2
FM + (1→ tFM)2

x0|xtFM ,y]

=E[cos (tTrig)z → sin (tTrig)x0|xtTrig ,y].

(23)

Consequently, we obtain

F ↑(xt,Trig, tTrig,y) =
1√

t
2
FM + (1→ tFM)2

[
(1→ 2tFM)xt,FM + (1→ 2tFM + 2t2FM)v

↑(xt,FM, tFM,y)
]
. (24)

Next, we consider a more realistic scenario where the model’s capacity is limited, leading to the learned velocity field

vω↑(xt,FM, tFM,y) = min
ω

Ex0,z,t[w(t)↗vω(xt,FM, tFM,y)→ (z → x0)↗2]. (25)

Under our parameterization, training the TrigFlow model amounts to minimizing

min
ω

Ex0,z,t




∥∥∥∥∥

1→ 2tFM√
t2FM + (1→ tFM)2

· xtFM +
1→ 2tFM + 2t2FM√
t2FM + (1→ tFM)2

vω(xt,FM, tFM,y)→ (cos(tTrig)z → sin(tTrig)x0)

∥∥∥∥∥

2




=min
ω

Ex0,z,t




∥∥∥∥∥

1→ 2tFM√
t2FM + (1→ tFM)2

· xtFM +
1→ 2tFM + 2t2FM√
t2FM + (1→ tFM)2

vω(xt,FM, tFM,y)→
(

1→ tFM√
t2FM + (1→ tFM)2

z →
tFM√

t2FM + (1→ tFM)2
x0

)∥∥∥∥∥

2




(26)

Substituting xt,FM = (1→ tFM)x0 + tFMz, the above expression simplifies to

min
ω

Ex0,z,t




∥∥∥∥∥

1→ 2tFM√
t2FM + (1→ tFM)2

· xtFM +
1→ 2tFM + 2t2FM√
t2FM + (1→ tFM)2

vω(xt,FM, tFM,y)→
(

1→ tFM√
t2FM + (1→ tFM)2

z →
tFM√

t2FM + (1→ tFM)2
x0

)∥∥∥∥∥

2




=min
ω

Ex0,z,t




∥∥∥∥∥

t2FM + (1→ tFM)2√
t2FM + (1→ tFM)2

vω(xt,FM, tFM,y)→
(

t2FM + (1→ tFM)2√
t2FM + (1→ tFM)2

z →
t2FM + (1→ tFM)2√
t2FM + (1→ tFM)2

x0

)∥∥∥∥∥

2




=min
ω

Ex0,z,t

[(
t2FM + (1→ tFM)

2) ↑vω(xt,FM, tFM,y)→ (z → x0)↑2
]

(27)
Thus, training the TrigFlow model with our parameterization is equivalent to training the flow matching model, apart from
differences in the loss weighting function w(t) and the timestep sampling distribution p(t).

E. Full Related Work

Text to Image Generation Text-to-image generation has experienced transformative advancements in both efficiency and
model design. The field gained early traction with Stable Diffusion [48], which set the stage for scalable high-resolution
synthesis. A pivotal shift occurred with Diffusion Transformers (DiT)[42], which replaced conventional U-Net architectures
with transformer-based designs, unlocking improved scalability and computational efficiency. Building on this innovation,
PixArt-φ[6] demonstrated competitive image quality while slashing training costs to only 10.8% of those required by Stable
Diffusion v1.5 [48]. Recent breakthroughs have further pushed the boundaries of compositional generation. Large-scale models
like FLUX [23] and Stable Diffusion 3 [10] have scaled up to ultra-high-resolution synthesis and introduced multi-modal
capabilities through frameworks such as the Multi-modal Diffusion Transformer (MM-DiT)[9]. Playground v3[30] achieved
state-of-the-art image quality by seamlessly integrating diffusion models with Large Language Models (LLMs)[8], while
PixArt-![5] showcased direct 4K image generation using a compact 0.6B parameter model, emphasizing computational
efficiency alongside high-quality outputs. Efficiency-driven innovations have also gained momentum. SANA [63] introduced
high-resolution synthesis capabilities through deep compression autoencoding [4] and linear attention mechanisms, enabling
deployment on consumer-grade hardware like laptop GPUs. Additionally, advancements in linear attention mechanisms for
class-conditional generation [3, 77], diffusion models without attention [57, 68], and cascade structures [44, 47, 58] have
further optimized computational requirements while maintaining performance. These developments collectively underscore
the field’s rapid evolution toward more accessible, efficient, and versatile text-to-image generation technologies.

Diffusion Model Step Distillations Current methodologies primarily coalesce into two dominant paradigms: (1) trajectory-
based distillation. Direct Distillation [35] directly learns noise-image mapping given by PF-ODE. Progressive Distillation [39,
49] makes the learning progress easier by progressively enlarging subintervals on the ODE trajectory. Consistency Models
(CMs) [54] (e.g. LCM [36], CTM [20], MCM [13], PCM [60], sCM [34]) predict the solution x0 of the PF-ODE given xt via
self-consistency. (2) distribution-based distillation. It can be further divided into GAN [12]-based distillation and its variational
score distillation (VSD) variants [37, 46, 50, 62, 66]. ADD [52] explored distilling diffusion models using adversarial training
with pretrained feature extractor like DINOv2 [41] in pixel space. LADD [51] further utilize teacher diffusion models as
feature extractors enabling direct discrimination in latent space, drastically saving the computation and GPU memories. [70]
stabilize VSD with regression loss. SID [75] and SIM [38] propose improved algorithms for VSD.

Real-Time Image Generation Recent advancements in real-time image generation have focused on improving the efficiency
and quality of diffusion models. PaGoDA [21] introduces a progressive approach for one-step generation across resolutions.
Imagine-Flash also uses a backward distillation to accelerate diffusion inference. In model compression, BitsFusion [55]
quantizes Stable Diffusion’s UNet to 1.99 bits, and Weight Dilation [32] presents DilateQuant for enhanced performance. For
mobile applications, MobileDiffusion [74] achieves sub-second generation times, with SnapFusion [26] and SnapGen [16]
enabling 1024x1024 pixel image generation in about 1.4 seconds. SVDQuant [25] introduces 4-bit quantization for diffusion
models, and when combined with SANA [63], enables fast generation of high-quality images on consumer GPUs, bridging the
gap between model performance and real-time applications.

F. More Details
F.1. Experimental Setup
Model Architecture Following the pruning technology in SANA-1.5 [64], our teacher models are fine-tuned from SANA
0.6B and 1.6B, respectively. The architecture, training data, and other hyperparameters remain consistent with SANA-1.5 [64].

Training Details We conduct distributed training using PyTorch’s Distributed Data Parallel (DDP) across 32 NVIDIA A100
GPUs on 4 DGX nodes. Our two-phase strategy involves fine-tuning the teacher model with dense time embedding and QK
normalization at a learning rate of 2e-5 for 5,000 iterations (global batch size of 1,024), as discussed in Sec. 3.1. Then, we
perform timestep distillation through the proposed framework at a learning rate of 2e-6 with a global batch size of 512 for
20,000 iterations. As Flash Attention JVP kernel support is not available in PyTorch [34], we retain Linear Attention [63] to
auto-compute the JVP.

Evaluation Protocol We use multiple metrics: FID, CLIP Score, and GenEval [11], comparing with state-of-the-art methods.
FID and CLIP Score are evaluated on the MJHQ-30K dataset [24]. GenEval measures text-image alignment with 553 test
prompts, emphasizing its ability to reflect alignment and show improvement potential. We also provide visualizations to
compare state-of-the-art methods and highlight our performance.

F.2. More Ablations
Inference Timestep Search Fig. 6 illustrates the process of timestep optimization for inference across 1, 2, and 4 steps,
comparing the performance of 0.6B and 1.6B models in terms of FID (top row) and CLIP-Scores (bottom row). The
optimization follows a sequential search strategy: first, we determine the optimal tmax for 1-step inference using arctan(n/0.5),
inspired by EDM [18], where n is searched for the maximum timestep. Using this tmax, we then search for the intermediate
timestep t2nd in 2-step inference. For 4-step inference, the timesteps for the first two steps are fixed to their previously
optimized values, while the third (t3rd) and fourth timesteps (t4th) are searched sequentially. In each case, the x-axis represents
the timestep being optimized at the current step, ensuring that earlier steps use their best-found values to maximize overall
performance. This hierarchical approach enables efficient timestep selection for multi-step inference settings.

Controlling the sCM Noise Distribution In the sCM-only experiments, we investigate the impact of different noise
distribution parameter settings on model performance. The noise distribution is defined as t = arctan

(
eω

ωd

)
, where ϑ ↓

N (Pmean, P
2
std). Starting from the initial parameters (→0.8, 1.6) proposed in sCM [34], we experiment with various mean and

standard deviation configurations to evaluate their effects. By tracking FID and CLIP-Score trends over 40k training iterations,
we identify (Pmean, Pstd) = (0.0, 1.6), represented by the green curve in Fig. 7, as the optimal setting. This configuration
consistently reduces FID while improving CLIP-Score, resulting in superior generation quality and text-image alignment. We
also observe that extreme mean values, such as Pmean = 0.6 or Pmean = →0.8, lead to significant training instability and even
failure in some cases. Consequently, we adopt (0.0, 1.6) as the default parameter setting.

Controlling the LADD Discriminator Noise Distribution Generative features change with the noise level, offering
structured feedback at high noise and texture-related feedback at low noise [51]. We compare the results for different mean and
standard deviation settings in t = arctan

(
eω

ωd

)
, where ϑ ↓ N (Pmean, P

2
std) for LADD discriminator. Building on the optimal

mean and standard deviation settings (0.0, 1.6) identified for sCM, we further explore the best noise configuration for the
LADD’s discriminator. In Fig. 8 and Tab. 8, we visualize the probability distributions of t sampled under different mean and
standard deviation settings, as well as the corresponding FID and CLIP-Score results when applied in the LADD loss. Based
on these analyses, we identify (→0.6, 1.0) as the optimal setting, which achieves a more balanced feature distribution across
high and low noise levels while maintaining stable training dynamics. Consequently, we adopt (→0.6, 1.0) as the default
configuration for LADD loss.

F.3. More Qualitative Results
SANA-Sprint-ControlNet Visualization Images In Fig. 9, we demonstrate the visualization capabilities of our SANA-
Sprint-ControlNet, which efficiently achieves impressive results in only 0.4 seconds using a 2-step generation process,
producing high-quality images at a resolution of 1024 ↘ 1024 pixels. The visualization process begins with an input image,

Done

E6F0E7 F7E8E6 E6EDF2

Inference Timestep search on 1, 2,
4 steps

FID comparison (1 step)

18

22.1

26.2

5k 10k 17k 35k

CLIP score comparison (2 steps) CLIP score comparison (4 steps)CLIP score comparison (1 step)

FID comparison (2 steps) FID comparison (4 steps)

10.24

6.5

8.5

10.5

1.546 1.551 1.554 1.557 1.568 π/2

0.6B 1.6B

7.48 7.49 7.58 7.61

9.15

7.04 7.15 7.29
7.59

8.73

9.47

27.9

28.0

28.1

1.546 1.551 1.554 1.557 1.568 π/2

0.6B 1.6B

28.04
28.06

28.08

28.04
28.02

27.94

27.91 27.95

27.99
28.00

28.08 28.08

7.80

6.59

6.09

6.0

6.9

7.8

1.0 1.1 1.2 1.3 1.4

0.6B 1.6B

7.38

7.11

6.96

6.55

7.05

7.35

7.67

28.3

28.3

28.4

1.0 1.1 1.2 1.3 1.4

0.6B 1.6B

28.33
28.34

28.35

28.40

28.30
28.32

28.37

28.40

28.32

28.32

6.70

6.52

6.5

6.6

6.8

0.4 0.5 0.6 0.7 0.8 0.9

0.6B 1.6B

6.65

6.72

6.66

6.72 6.73

6.516.51
6.54

6.49
6.54

28.4

28.4

28.5

0.4 0.5 0.6 0.7 0.8 0.9

0.6B 1.6B
28.46

28.38 28.38

28.43

28.3728.37

28.45 28.45

28.38

28.44
28.45

28.38

Figure 6. Inference timesteps search. This figure illustrates the performance of timesteps search for achieving optimal results during
inference with 0.6B and 1.6B models. The subplots compare FID (top row) and CLIP-Score (bottom row) across different timesteps for
1-step, 2-step, and 4-step inference settings. The x-axis represents the timestep being searched at the current step; for multi-step settings
(e.g., 4 steps), the timesteps for earlier steps are fixed to their previously optimized values.

Table 7. Inference timestep settings for both SANA-Sprint 0.6B and 1.6B models.

1 step 2 steps 4 steps
Timestep T [↼/2, 0.0] [arctan(200/0.5), 1.3, 0.0] [arctan(200/0.5), 1.3, 1.1, 0.6, 0.0]

Done

E6F0E7 F7E8E6 E6EDF2

FI
D

9.0

12.0

15.0

8000 12000 16000 20000 24000 28000 32000 36000 40000

(-0.8, 1.6) (-0.4, 1.6) (0.0, 1.6)
(0.2, 1.6) (0.2, 2.0) (0.4, 1.6)

(a) FID Comparison over Training Steps

CL
IP

-S
co

re

25.0

25.2

25.4

8000 12000 16000 20000 24000 28000 32000 36000 40000

(-0.8, 1.6) (-0.4, 1.6) (0.0, 1.6)
(0.2, 1.6) (0.2, 2.0) (0.4, 1.6)

(b) CLIP-Score Comparison over Training Steps

sCM Mean Std on
FID CLIP

Figure 7. Controlling the sCM noise distribution. This figure compares FID and CLIP-Score across different noise distribution settings
over 40k training steps in sCM-only experiments. The green curve (Pmean, Pstd) = (0.0, 1.6) demonstrates optimal performance, achieving
stable training dynamics and superior generation quality.

which is processed using a HED detection model to extract the scribe graph. This scribe graph, combined with a given prompt,
is used to generate the corresponding image in the second column. The third column presents a blended image that combines
the generated image with the scribe graph, highlighting the precise control of the model through boundary alignment. This
visualization showcases the model’s ability to accurately interpret prompts and maintain robust control over generated images.

More Visualization Images In Fig. 11, we present images generated by our model using various prompts. SANA-Sprint
showcases comprehensive generation capabilities, including high-fidelity detail rendering, accurate semantic understanding,
and reliable text generation, all achieved with only 2-step sampling. In particular, the model efficiently produces high-quality
images of 1024 ↘ 1024 pixels in only 0.24 seconds on an NVIDIA A100 GPU. The samples demonstrate versatility in various

Figure 8. Controlling the LADD noise distribution. We vary the
parameters of a logit-normal distribution for biasing the sampling
of the LADD teacher noise level. When biasing towards very high
noise levels (m = 0.4, s = 2), we observe unstable training.

Table 8. Comparison of different noise distributions for LADD loss.

Mean, Std FID ≃ CLIP ⇐
(-0.6, 1.0) 9.48 28.08
(-0.6, 2.0) 10.36 28.03
(0.0, 1.0) 13.11 27.18
(0.0, 2.0) 11.25 27.96
(0.4, 2.0) 9.77 28.00
(0.6, 1.0) 12.85 27.32

Working
Input Image HED Signal

Output Blender
SANA-Sprint-ControlNet

2-step Output

prompt: A blue melting apple

prompt: portrait photo of a girl, photograph

E6F0E7 F7E8E6 E6EDF2

prompt: Mystical Apple Made of Rubik’s Cubes

prompt: portrait photo of a boy, photograph

HED Signal
Output Blender

SANA-Sprint-ControlNet
2-step Output

Figure 9. Visualization of SANA-Sprint-ControlNet’s capabilities. The model outputs high-quality images of 1024 ↔ 1024 pixels in only
2 steps and 0.3 seconds on an NVIDIA H100 GPU. The process involves processing the input image (first column) to extract a scribe graph,
which, along with a prompt, generates an image (second column). The blended image (third column) highlights precise boundary alignment
and control, demonstrating the model’s robust control capabilities.

scenarios, from in tricate textures and complex compositions to accurate text rendering, highlighting the robust image quality
of the model in both artistic and practical tasks.

Done

E6F0E7 F7E8E6 E6EDF2

Figure 10. ControlNet Demo: Hand-Crafted Scribble to Stunning Image. Left: A hand-crafted scribble created with a brush. Right: The
result generated by the Sana-Sprint-ControlNet model, strictly following the scribble and prompt. Inference Latency: The model achieves
remarkable speed, generating the 1024 ↔ 1024 images in only 1 step and 0.25 seconds on H100 GPU, as shown in the right red box. This
demo showcases the model’s exceptional control and efficiency, adhering closely to the user’s input while producing visually appealing
results.

Figure 11. Generated images with SANA-Sprint. The model outputs high-quality images of 1024 ↔ 1024 pixels in 2 steps and 0.24
seconds on an NVIDIA A100 GPU, showcasing comprehensive generation capabilities with high-fidelity details and accurate text rendering,
handling diverse scenarios with robust image quality.

	Introduction
	Preliminaries
	Diffusion Model and Its Variants
	Consistency Models

	Method
	Training-Free Transformation to TrigFlow
	Stabilizing Continuous-Time Distillation
	Improving Continuous-Time CMs with GAN
	Application: Real-Time Interactive Generation

	Experiments
	Experimental Setup
	Efficiency and Performance Comparison
	Analysis

	Related Work
	Conclusion
	Pseudo Code for Training-Free Transformation from Flow to Trigflow
	Transformation Algorithm
	Training Algorithm of SANA-Sprint
	Proof of Proposition 3.1
	Full Related Work
	More Details
	Experimental Setup
	More Ablations
	More Qualitative Results

