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1. Ablation Studies on GDAU
Different to traditional GRUs [1, 2], our proposed GDAU
utilizes an activation ratio to regulate the outputs. Through
model training, it is able to adaptively focus on the regions
of foreground targets and identify dynamic details. Accord-
ing to the components ablation studies in the main text, the
activation ratio significantly influences the dynamic features
learning of DDFE. By removing activation ratio, GDAU re-
verts to a standard GRU, and thus DDFE lose the ability
to distinguish static and dynamic regions. Furthermore, in
this section, we extend the ablation studies to analyze the
GDAU’s calculations involving the static, varying values
and the dynamic map. As outlined in the main text, four
widely-used metrics are employed for evaluations, includ-
ing structure measure (Sα) [3], enhanced-alignment mea-
sure (Eϕ) [4], weighted F-measure (Fw

β ) [6] and mean dice
coefficient (Dice). Dice measures the similarity between
predictions and their corresponding ground truth annota-
tions. Sα servers as a metric for structural similarity, with
α set to 0.5. In addition, Eϕ is used to evaluate the hetero-
geneous location and shape of polyps, where ϕ denotes the
enhanced-alignment matrix. Fw

β is the weighted harmonic
mean of precision and recall for more comprehensive eval-
uation. The quantitative results are presented in Tab. 1. Ac-
cording to Eq. 11 in the main text, when the static value is
omitted, the equation simplifies to:

U t = S ⊙ (1− V t
vary) + V t

vary ⊙M t
dynamic (1)

Similarly, when the varying value is not computed, we use
the following formula to calculate the dynamic regions:

U t = V t
static ⊙ S + (1− V t

static)⊙M t
dynamic (2)

In addition, we also perform an ablation study where the
calculations of static, varying values and dynamic map are
replaced with a cross-attention mechanism. The results
show that varying value contributes more in enabling DDFE
to distinguish dynamic regions. Meanwhile, although the
combination of cross-attention and the activation ratio pro-
vides a similar focus on the dynamic regions, it introduces
additional computational cost.

2. Quantitative Results on Different Scenarios
In this section, we present more statistical comparisons on
both the seen and unseen cases of the SUN-SEG test sets,
as shown in Tab. 2 and Tab. 3. Note that STDDNet1 is con-
structed on the Res2Net-50 backbone, while STDDNet2

Module Setting Sα Eϕ Fw
β Dice

GDAU

All components 88.71 92.11 82.92 83.79
No static value 88.19 91.78 82.08 83.47
No varying value 88.12 91.80 81.94 83.25
Cross-attention 87.66 91.45 81.51 82.93

Table 1. Ablation studies on the SUN-SEG-Hard test set, evaluat-
ing the effects of different calculations in GDAU.

Method
SUN-SEG-Easy-Seen (%) SUN-SEG-Easy-Unseen (%)

Sα Eϕ Fw
β Dice Sα Eϕ Fw

β Dice
Vim 91.74 95.12 88.94 88.81 76.91 80.15 67.09 66.28

VMamba 92.74 96.00 89.07 90.02 78.98 83.14 68.11 68.72
Polyp-SAM 91.77 94.05 87.13 87.71 79.71 84.36 68.65 69.71

G-CASCADE 93.03 96.26 90.71 90.92 82.59 88.30 75.96 76.19
VideoMamba 93.46 96.20 88.99 90.07 83.21 88.09 76.17 77.26

PNS+ 93.21 95.44 89.54 89.96 80.27 79.87 68.80 68.90
SALI 93.58 96.62 89.85 90.91 84.66 88.40 76.66 77.80

STDDNet1 94.06 97.16 90.76 91.87 85.41 90.91 77.56 79.52
STDDNet2 94.12 96.93 91.22 91.80 85.56 89.92 78.93 79.91

Table 2. Statistical comparison with different state-of-the-art
methods on the SUN-SEG-Easy test set.

Method
SUN-SEG-Hard-Seen (%) SUN-SEG-Hard-Unseen (%)

Sα Eϕ Fw
β Dice Sα Eϕ Fw

β Dice
Vim 85.17 89.61 79.54 79.17 77.36 82.36 66.58 66.31

VMamba 88.69 92.57 83.59 84.28 77.67 83.73 65.77 66.96
Polyp-SAM 87.89 91.48 81.88 82.71 80.95 85.31 70.08 71.61

G-CASCADE 89.61 94.14 85.79 86.43 83.03 88.83 75.03 75.80
VideoMamba 90.43 93.45 84.23 85.68 83.76 89.59 77.71 76.76

PNS+ 90.77 94.16 86.41 86.98 81.51 82.16 70.48 71.00
SALI 90.31 94.44 85.74 86.93 85.44 89.92 76.82 78.85

STDDNet1 91.59 95.39 87.19 88.38 85.39 90.32 76.02 78.51
STDDNet2 91.22 94.81 87.31 88.35 86.27 90.51 79.33 80.82

Table 3. Statistical comparison with different state-of-the-art
methods on the SUN-SEG-Hard test set.

employs PVTv2-B2 as the image encoder backbone. On
both the ‘easy’ and ‘hard’ test sets, most image-based seg-
mentation networks demonstrate a more pronounced per-
formance degradation in unseen scenarios, primarily due
to their inability to model spatiotemporal consistency from
video sequences. In addition, the segmentation perfor-
mance of PNS+ [5] also suffers significant degradation in
the unseen scenarios, as its normalized self-attention mech-
anism lacks sufficient training on similar scenes. Compared
to other competitors, our proposed STDDNet achieves su-
perior performance on both SUN-SEG ‘easy’ and ‘hard’ test
sets, owing to its effective spatiotemporal dependency mod-
eling via STDP and dynamic features extraction through
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Figure 1. Visual comparisons with different state-of-the-art methods on the SUN-SEG test sets. Red, green and yellow areas represent the
ground truth, prediction and their overlapping regions, respectively.

Figure 2. Visual comparisons with different state-of-the-art methods on the test set of CVC-Clinic DB. Red, green and yellow areas
represent the ground truth, prediction and their overlapping regions, respectively.

DDFE. The enhanced spatiotemporal and dynamic features
enable our STDDNet to address the challenges of VPS more
effectively and efficiently.

3. Qualitative Results

To qualitatively evaluate the effectiveness of our proposed
STDP and DDFE modules, we compare the prediction re-
sults of different components, as shown in Fig. 3. By adding
STDP to the baseline network, the model is able to model
temporal consistency from the video clips, thereby provid-
ing more positional information of foreground targets to im-
prove polyp localization. In addition, by adding DDFE to
the baseline network, more dynamic areas across frames are
identified, particularly including the boundary details. Fur-
thermore, the network equipped with both the STDP and
DDFE modules leverages their complementary strengths for
addressing VPS task, where STDP learns temporal consis-
tency across adjacent frames and DDFE explores frame-

Figure 3. Segmentation results of ablation studies on the SUN-
SEG test sets. (a) Input images. (b) Ground truth. (c) Baseline.
(d) Model with STDP. (e) Model with DDFE. and (f) ours. Red,
green and yellow areas represent the ground truth, prediction and
their overlapping regions, respectively.

wise dynamic differences, collectively yielding more accu-
rate segmentation results.

More visualization comparisons between our STDDNet
and different state-of-the-art methods on SUN-SEG dataset
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and CVC-Clinic DB are as shown in Fig. 1 and Fig. 2,
respectively. Fig. 1 presents continuous segmentation re-
sults on consecutive frames with a distinct perspective al-
teration. The results show that VPS methods predominantly
outperforms IPS methods, and our STDDNet generates re-
fined predictions owing to the dynamic details captured by
DDFE. Furthermore, even in cases with weak inter-frame
continuity, STDDNet maintains prediction quality compa-
rable to IPS methods, as illustrated in Fig. 2.
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