Sparse Fine-Tuning of Transformers for Generative Tasks

Supplementary Material

A. Analysis
A.1. Analysis of Adapted Feature Representation

With our formulation, the adapted feature representation
AQ at each layer can be expressed as a linear combination
of learned atoms D. However, deep neural networks repre-
sent features non-linearly. Although AQO can be expressed
linearly in terms of D, its influence becomes non-linear as
it interacts with activation functions and transformations in
subsequent layers. In this section, we introduce an approx-
imation method to address this non-linearity, enabling us to
trace and quantify the contribution of each atom to the final
outputs throughout the entire model.

Formulation of the pre-trained model. We represent
each layer of the pre-trained model as f()(x). For an
L-layer model, it writes as f(*) o --- o f(1)(x), where
Il =1,---,L is the index of the layer. Based on the func-
tional approximation theory, we can approximate the func-
tion in an appropriate basis. Given a basis {gx}1 |, the
coefficients of basis expansion are u; = (f, gi), such that
f(x) = Ele Lrgr(x), where (-, -) is inner product. For
simplified analysis, we utilize the polynomial basis, and
represent f(x) as:

K
f(x) = chxk. (10)
k=1

The influence of atoms on one layer. Fine-tuning intro-
duces adapted feature representation at layer [ — 1, i.e.,
AOU-1D = SD, which become the perturbation of the
input X at layer I. For each input, we have x +
Zﬁle $mdm, where d,,, € R% is the single atom in D
and s,, is the corresponding sparse coefficient. With the
perturbation, we have

M M
Fe+ D smdn) = f(x)+ Y Br(dn), (1)
m=1 m=1

where By (d,,,) = Zle Br.mdk, and By, depends on x,
Sm, and ¢. We assume (d;,d;) = 0,Vi # j to avoid cor-
related influence from different atoms. It can be achieved
with a simple regularization term. With the influence of lin-
ear perturbations based on atoms at layer [ — 1, the different
in the output at layer [ is determined by the linear combina-
tion of higher-order terms of these atoms d¥,.

The accumulated influence of atoms on multiple layers.
Applying the same formulation to layer [ + 1 results in a
similar expression as above, but incorporates the combined
influence of atoms from both layer | — 1 and layer [. Specif-
ically, the input of layer [ + 1 is written as,

M M
x4 3" s0dD + Y " Braon (dY),  (12)
m=1 m=1

where x(*1) is the original input at layer [ + 1,
Zn]\le sthall) is the linear perturbations based on the
atoms from layer [, Zﬁf:l Bra-1 (dg,lfl)) is the influence
of the atoms from layer [ — 1, which is a combination of
higher-order terms. The output of layer [ + 1 is,
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13)

This formulation can be naturally extended to the whole
model. We provide detailed analysis in Appendix A.

After incorporating atoms into each layer to linearly cap-
ture the adapted feature representations, the model out-
put can be interpreted as the original pre-trained output
with perturbations introduced by the atoms at each layer.
The atoms from the shallow layer (e.g., layer 1), intro-
duce more higher-order terms to the final output, i.e.,
Byr go (dﬁ,?). It contributes more to the overall struc-
ture of the output. The atoms from the deep layer ((e.g.,
layer L)), introduce fewer higher-order terms, or only linear
terms to the final output. It contributes more to the details
of the output.

A.2. Proof

The proof of (11). To prove (11), we assume (d;,d;) =
0,Vi # j to avoid correlated influence from different atoms.
It can be achieved with a simple regularization term.

Proof. Inserting (10) to the LHS of (11), we have

M
(x4 Y smdp). (14)
m=1

M=

M
f(x+ Z Smdm) =
m=1

k=1



After expanding this equation, we have

K M
cr(x+ Z smdm)k
k=1 m=1
K k M J (15)
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k=1 =0 m=1

(Z smdm> = Z (smdm)j. (16)

m=1 m=1
Thus,
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We define

K k
Br(dm)=> x> (;“) xF T (sppdin)’ . (18)

k=1 j=1

which represents the higher-order terms of d,, up to order
K. O

The proof of (13). Here we only provide a sketch of proof
of (13). Compared with (11), (13) contains an additional
term Zf\le Bru-n (dgl_ 2 ). After applying the expansion
(10), we will have

L M J
Z@ (Bm_m(d&”))’“j(Zsmdm) . (19
7=0 m=1

which produces the higher-order terms of dgfl) up to order
K= 4 KO thus we have Bya—1 g (A% ) in (13).

B. Experimental Settings

MNIST generation with VAE. In this experiment, the in-
put of MNIST has the size of 28 x 28. The VAE consists
with an encoder and decoder, each with two layers, a feature
dimension of 128, and four attention heads. It first reshape
the input with a patch size of 7. The latent space is mapped
to a dimension of 32. We train the model using the Adam
optimizer with a learning rate of 0.001 for 20 epochs.
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Figure 8. The illustration of Fourier basis.

Generative tasks with DiT. In this experiment, we use
the CAME [29] optimizer with a learning rate of 1 x 10~ to
fine-tune the Pixart-X [7]. For the baseline methods, LoRA
and DoRA are assigned a rank of r = 16, while OFT is
set to r = 4. We generated five images for each prompt
at a resolution of 1024 x 1024. We run the experiment on
Nvidia A5000 with 24GB memory. For the image editing
task, we train the model on 1 image for 60 epochs, which
takes about Smin. For the concept customization task, we
train the model on 4-6 images for 15 epochs, which takes
about Smin.

C. Additional Experimental Results
C.1. Toy Experiment

Experimental setting. In this experiment, we only use
the attention block to transform the signal, the feature
dimension is 128, and the sequence length is 64. The
synthetic signals are generated by randomly combining 5
Fourier bases, which is shown in Figure 8. To leverage
the transformer, we first project the 1D signal into a 64D
space using a randomly initialized projection matrix, which
remains frozen during training. The output signal is then
mapped from 64D back to 1D by summing across all 64
dimensions.

Sparse coefficients provide interpretability. The sparse
coefficients S enhance interpretability by establishing a di-
rect connection between a small subset of atoms and the
output feature, ie., O; = Z;\il S;;D;. This behavior
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Figure 9. Compared to the performance of (a) standard atten-
tion AX'W,, (b) the sparse combination of atoms o) (AXW,)D
provides more interpretability. The reconstructed signal is a linear
combination of basic signals. Without sparse coefficients, con-
structing the signal requires 100 atoms. However, with sparse co-
efficients, the reconstructed signal is effectively represented us-
ing only 9 atoms, demonstrating a more compact and interpretable
composition.

is also validated in the literature on sparse coding, com-
pressed sensing, and dictionary learning [6]. To explore
this within the context of an attention block, we perform
an experiment where masked one-dimensional signals are
reconstructed using an attention mechanism. The signals,
with a length of 64, are synthesized by selecting 5 random
Fourier bases, with a low frequency ranging from 6% to %.
The objective is to reconstruct the signal after masking out
75% of its values with only 16 randomly sampled observa-
tions. As illustrated in Figure 9, for both O = AXW,, and
O = 0)\(AXW,)D, the attention block successfully re-
constructs signals after jointly learning the coefficients and
atoms. o)(AXW,)D takes advantage of sparse coding,
and requires only 9 atoms to fully reconstruct the signal. In
comparison, AXW, requires 100 atoms to construct the
signal. Interestingly, the atoms D in 0y (AXW,)D natu-
rally resemble certain Fourier basis functions from the ones
used to synthesize real data.

Description of reconstructed images. Figure 3 also
shows that the number of selected atoms impacts the gen-

erated results. For example, when learning the concept de-
scribed in the top row, “A grey (V) wolf plushie ...”, by
adjusting the number of active atoms we can see that some
atoms influence the texture of the fur, while others shape the
posture of the object or determine the position of the bow
tie. For the concept in the second row, “A blue (V') sports
car...”, we observe that certain atoms influence the orienta-
tion of the sports car, while others affect the position of the
rear wing and the shape of the grille. For the concept in the
third row, “A (V') wooden barn ...”, we observe that certain
atoms influence the number of lean-tos on the barn, while
others affect the slope of the roof.

C.2. Personalization Results Comparison

In this section, we showcase the comparison of personaliza-
tion results for various concepts selected from the Dream-
Booth [47] dataset.

As shown in Figures 11-16, our approach produces
outputs that not only align more accurately with the text
prompts but also preserve the fine details of each learned
concept more effectively than the baselines.

C.3. Sparse Fine-tuning Modules Merging

We conduct concept-style merging experiments following
[14, 48]. We begin by fine-tuning the pre-trained diffu-
sion model separately on the concept and style images using
our method, producing their respective fine-tuned weights.
For a given concept—style pair, we then merge the weights
by directly summing the corresponding fine-tuned param-
eters. With the merged weights applied to the pre-trained
model, it can generate images that reflect both the desired
concept and style. We observe that summing the weights
does not lead to forgetting of either attribute, since the ac-
tivated atoms from the fine-tuned weights rarely overlap
due to the highly sparse nature of the learned dictionaries.
Fig. 10 demonstrates that our method preserves compos-
ability, indicating that our method enables multi-task be-
havior through simple weight merging.
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Figure 10. Examples of concept-style merging.
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A backpack with the Eiffel Tower in the background.
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Figure 11. Personalization generated results comparison
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A teapot on top of green grass with sunflowers around it.

Figure 12. Personalization generated results comparison
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A wolf plushie on top of the sidewalk in a crowded street.

Figure 13. Personalization generated results comparison
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A grey sloth plushie floating on top of water.

Figure 14. Personalization generated results comparison
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A dog wearing a_rainbow scarf.

Figure 15. Personalization generated results comparison
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A shiny sneaker with a wheat field in the background.

Figure 16. Personalization generated results comparison
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