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1. Detailed Information about Datasets and
Metrics

1.1. Datasets
1.1.1. Pretraining Data Organization
This chapter serves as a supplement to Section 5 in the main
paper, providing detailed information about the datasets
used in this study.

For the pretraining phase of TokenUnify, we addition-
ally leverage a diverse collection of publicly available
unlabeled EM imaging data from four large-scale EM
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Figure 1. The relative positions of the wafer layers selected from
the MEC dataset.

datasets: FAFB [27], MitoEM [31], FIB-25 [30], and
Kasthuri15 [16]. These datasets cover a wide range of or-
ganisms, including Drosophila, mouse, rat, and human sam-
ples, totaling over 1 TB of high-resolution EM data. The di-
versity of this pretraining data ensures that our model learns
robust features that generalize across different brain regions
and even different species.



We sample from these datasets with equal probability
during pretraining, guaranteeing the diversity of the visual
features encountered by the model. This comprehensive
pretraining strategy enables TokenUnify to learn general-
izable representations of neuronal structures that can be ef-
fectively fine-tuned for specific segmentation tasks.

All pretraining datasets employed are publicly available,
with their specifics outlined in Table 1.

1.2. Ultra-high Resolution EM Dataset MEC Con-
struction

To support the development and evaluation of our hierarchi-
cal predictive coding framework, we introduce a large-scale
electron microscopy (EM) dataset specifically designed to
capture the long-range spatial dependencies critical for neu-
ron segmentation. The construction of this dataset ad-
dresses a fundamental challenge in the field: the lack of
comprehensive, finely annotated EM data with sufficient
scale to train and evaluate models that can capture complex
neuronal structures.

1.2.1. Data Collection
The MEC dataset originates from our team’s Mouse MEC
MultiBeam-SEM imaging efforts, where we performed
comprehensive brain imaging of mice, accumulating data at
the petabyte scale. MEC dataset consists of high-resolution
EM images acquired from multiple regions of the mouse
brain. Using advanced sample preparation techniques and
state-of-the-art electron microscopy, we collected a 2TB
dataset imaging the mouse somatosensory cortex, mouse
medial entorhinal cortex, and mouse cerebral cortex at a res-
olution of 4nm×4nm×35nm per voxel. This ultra-high res-
olution enables the visualization of fine neuronal structures,
including dendritic spines, axonal boutons, and synaptic
connections that are essential for understanding neural cir-
cuits.

1.2.2. Large-Scale Manual Annotation
To provide ground truth for training and evaluation, we
conducted extensive manual annotation of the EM vol-
umes. As shown in Fig. 1(b), we selected six repre-
sentative volumes from different neural regions, named
wafer4/25/26/26-2/36/36-2 as illustrated in Fig. 1(a), with
each volume size reaching 1250 × 1250 × 125 voxels. These
regions were carefully chosen to represent diverse neuronal
morphologies and circuit organizations, ensuring that mod-
els trained on this data can generalize to various brain struc-
tures.

The annotation process involved precise delineation of
neuronal boundaries by expert neuroscientists, identifying
distinct neurons as separate instances while preserving their
complex morphological features. This labor-intensive pro-
cess took two experts a total of six months to complete, re-
sulting in over 1.2 billion annotated voxels. The annota-

tion pipeline involved multiple quality control steps to en-
sure consistency and accuracy, including cross-validation
between annotators and verification against known neu-
roanatomical structures.

1.2.3. Spatial Continuity for Long-sequence Modeling
A key feature of our MEC dataset is its emphasis on spatial
continuity, making it an ideal testbed for evaluating meth-
ods that aim to capture long-range dependencies. Unlike
many existing computer vision datasets that consist of in-
dependent images, our EM volumes preserve the natural
continuity of neuronal structures across thousands of con-
secutive slices. This continuity is essential for modeling
the complex branching patterns and long-range connections
characteristic of neuronal morphology.

The ultra-high resolution of our dataset allows for the
extraction of thousands of continuous image tokens from
a single volume, providing the necessary context length to
evaluate autoregressive models. This property makes our
dataset particularly well-suited for TokenUnify, which is
designed to leverage both local and global context in pre-
dicting complex visual structures.

1.3. Metrics
Variation of Information (VOI) is an information-theoretic
measure that assesses the distance between two clusterings
in terms of their average conditional entropy. Given the pre-
dicted segmentation Spred and the ground-truth segmenta-
tion Sgt, VOI is defined as:

V OI(Spred, Sgt) = H(Spred|Sgt) +H(Sgt|Spred), (1)

where H(·|·) denotes the conditional entropy. It can be cal-
culated by:
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where Si
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pred represent the i-th and j-th segments in
the ground-truth and predicted segmentation, respectively,
and N is the total number of voxels. VOI ranges from 0 to
∞, with a lower value indicating better segmentation per-
formance.

Adjusted Rand Index (ARAND) is a variant of the Rand
Index [2] that corrects for chance when comparing two clus-
terings. It is defined as:
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Dataset Modality Resolution Species Target Region

Full Adult Fly Brain (FAFB) [27] EM 4 × 4 × 40 nm3 Drosophila Whole brain
MitoEM-H [31] EM 8 × 8 × 30 nm3 Human Cortex (Mitochondria)
MitoEM-R [31] EM 8 × 8 × 30 nm3 Rat Cortex (Mitochondria)
FIB-25 [30] EM 5 × 5 × 5 nm3 Drosophila CA1 Hippocampus
Kasthuri15 [16] EM 3 × 3 × 30 nm3 Mouse Neocortex

Table 1. Detailed description of the EM pre-taining datasets

where nij is the number of voxels that are in segment i of
Spred and segment j of Sgt, ai =

∑
j nij is the number of

voxels in segment i of Spred, bj =
∑

i nij is the number of
voxels in segment j of Sgt, and N =

∑
ij nij is the total

number of voxels. ARAND ranges from 0 to 1, with a lower
value indicating better segmentation performance.

2. Method Details
Implementation Details. We employ consistent training
configurations for both pretraining and fine-tuning phases.
The network architecture remains unchanged throughout all
training stages. For fine-tuning, we optimize using AdamW
optimizer [25] with β1 = 0.9, β2 = 0.999, learning
rate of 1 × 10−6, and batch size of 20 on NVIDIA GTX
3090 (24GB) GPUs. Pretraining utilizes batch size of 8
on NVIDIA Tesla A40 (48GB) GPUs due to memory con-
straints.

We conduct distributed training with 8 NVIDIA GTX
3090 GPUs for segmentation tasks (1200 epochs) and
32 NVIDIA Tesla A40 GPUs for pretraining tasks (400
epochs). The pretraining input volume resolution is set to
16×160×160 voxels with patch size of 4×16×16 voxels
for tokenization.

Multi-Resolution Optimization Protocol. Our hierar-
chical predictive coding employs a temporal modulation
strategy with task weights α(t) = [α(t), β(t), γ(t)] gov-
erning the contributions of random token prediction, next-
token prediction, and next-all token prediction respectively.
The curriculum follows an easy-to-hard progression:

α(t) =


[0.73, 0.18, 0.09] if t < T1 (random-dominant)
[0.18, 0.73, 0.09] if T1 ≤ t < T2 (next-dominant)
[0.09, 0.18, 0.73] if t ≥ T2 (next-all-dominant)

(4)

where transition thresholds are T1 = 0.3 × Ttotal and T2 =
0.7×Ttotal. This progressive weighting scheme implements
our theoretical motivation that local feature learning should
precede global structure modeling.

For downstream segmentation, we employ two post-
processing algorithms: Waterz [11] with 50% quantile

threshold and LMC [3] using Kernighan-Lin solver [17].
Network initialization for fine-tuning loads pretrained
weights following established protocols [14].

Algorithm 1: TokenUnify Pre-training
Input : Unlabeled image data

X = {X(1), . . . , X(T )}
Input : Model parameters θ1
Output: Pre-trained model fθ1(·)

1 for t← 1 to T do
2 Partition X(t) into patches {x1, . . . , xK}
3 Tokenize patches: {x1, . . . , xK} → tokens

4 Compute loss functions:
5 Random token prediction:

Lrandom = −
∑

i∈M log p(xi | xM̄ )
6 Next token prediction:

Lnext = −
∑K

i=1 log p(xi | x<i)
7 Next-all token prediction:

Lnext-all = −
∑K

i=1

∑K
j=i log p(xj | x<i)

8 Update θ1 to minimize Lrandom, Lnext, Lnext-all

9 return fθ1(·)

Pre-training is conducted on a large-scale, ultra-high-
resolution electron microscopy (EM) image dataset, pro-
viding spatially correlated long sequences. TokenUnify
demonstrates significant improvements in segmentation
performance on downstream EM neuron segmentation tasks
compared to existing methods. Our pre-training and fine-
tuning algorithms are summarized in Algorithm 1 and Al-
gorithm 2, respectively. The TokenUnify pre-training al-
gorithm captures both local and global dependencies in
image data through mixed token prediction tasks. The
Mamba network architecture ensures efficient modeling of
long sequences. During fine-tuning, the pre-trained model
adapts to downstream segmentation tasks using labeled
data, achieving state-of-the-art performance on EM neuron
segmentation benchmarks.
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Figure 2. Segmentation pipeline.

EMmamba-tiny EMmamba-small EMmamba-middle EMmamba-large EMmamba-huge

Mamba layer [2,2,2,2] [2,2,2,2] [2,2,2,2] [2,2,2,2] [2,2,2,2]

Feature size [32,64,128,256] [64,128,256,512] [96,192,384,768] [144,288,576,1104] [192,384,768,1536]

Hidden size 512 1024 1024 2048 3072

Kernel size [1,5,5] [1,5,5] [1,5,5] [1,5,5] [1,5,5]

Batch size 40 22 12 8 4

Param. (M) 28.30 112.5 206.6 506.6 1008

Table 2. Shows the differ in architecture when adding the parameters of the segmentation backbone.

Algorithm 2: TokenUnify Fine-tuning

Input : Labeled data Dl = {(xl
i, yi)}

|Dl|
i=1

Input : Pre-trained model fθ1(·)
Input : Segmentation model gθ2(·)
Output: Fine-tuned segmentation model gθ2(·)

1 Initialize θ2 with θ1

2 for i← 1 to |Dl| do
3 ŷi = gθ2(fθ1(x

l
i))

4 Lseg = 1
|Dl|

∑|Dl|
i=1 |ŷi − yi|2

5 Update θ2 to minimize Lseg

6 return gθ2(·)

2.1. Perceiver Resampler
The workflow of the Perceiver Resampler [1, 4, 5] can be
summarized in the following steps: 1. Combine the out-
put of the Vision Encoder (e.g., features from images) with
learned time position encodings. 2. Flatten the combined
features into a one-dimensional sequence. 3. Process the
flattened features using Transformer layers that incorporate
attention mechanisms, which interact with learned latent
query vectors. Output a fixed number of visual tokens equal
to the number of latent queries.

The input visual features, denoted as xf , have a shape
of [T, S, d], where T represents the time dimension, S the
spatial dimension, and d the feature dimension. The time
position embeddings, represented by t, are of shape [T, 1, d]
and are added to the visual features to incorporate temporal



Algorithm 3: Perceiver Resampler Pseudocode
Input : xf - The [T, S, d] visual features (T=time,

S=space)
Input : t - The [T, 1, d] time position embeddings
Input : x - R learned latents of shape [R, d]
Input : num layers - Number of layers
Output: x - Updated learned latents

1 Add time position embeddings and flatten:
2 xf ← xf + t
3 xf ← flatten(xf )
4 // [T, S, d]→ [T × S, d]

5 Apply the Perceiver Resampler layers:
6 for i← 1 to num layers do
7 x← x+ attentioni(q = x, kv =

concat([xf ,x]))
8 x← x+ ffwi(x)

9 return x

Algorithm 4: Alternating Optimization Protocol
Input: Training data D, model fθ, initial weights θ0

1 Pretrain using MAE phases 1-2
2 for t = 1 to T do
3 Sample mode mt ∼ Pt where

Pt = [pnext-all, pAR, pMask]
⊤

4 Compute batch loss Lmt
for current mode

5 Update θt+1 ← θt − ηt∇θLmt

6 Anneal Pt: Increase pAR while decreasing pMask
; // Probability adjustment

7 end

information.
The learned latents, denoted as x, have a shape of [R, d],

where R is the number of latents and d is the feature dimen-
sion. The parameter num layers specifies the number of
layers in the Perceiver Resampler model.

The operation flatten reshapes the input tensor from
[T, S, d] to [T × S, d]. The function attention i rep-
resents the attention mechanism applied in the i-th layer,
which takes a query q and key-value pairs kv. The function
concat concatenates the input tensors along the specified
dimension. Finally, ffw i refers to the feedforward net-
work applied in the i-th layer.

2.2. Alternating Protocol
Our alternating protocol implements stochastic mode
switching:

The sampling distribution Pt follows a curriculum

schedule:

pMask = max(0.7− t/τ, 0.3), pAR = 1− pMask − pnext-all
(5)

where τ is the transition period hyperparameter. This
implements gradual shift from reconstruction-heavy to
prediction-focused training.

Theorem 1 (Convergence Guarantee). Let Lt satisfy
∥∇Lt − ∇Lt+1∥ ≤ L∥θt − θt+1∥ with step sizes ηt =
η0/
√
t. Then alternating optimization achieves:

min
1≤t≤T

E[∥∇Lt∥2] ≤
C√
T

(
1 + log T + σ2

mode

)
(6)

where C is a constant and σ2
mode quantifies mode sampling

variance.

Proof sketch appears in Appendix 8, extending [26] to
our alternating regime. The bound shows sublinear conver-
gence despite mode switching stochasticity.

2.3. Segmentation Method
The EMmamba network is structured into three principal
components (as detailed in Fig. 2): 3D feature encoder,
convolution-based decoder for segmentation prediction, and
skip connections to integrate local multi-scale features into
the decoder for feature fusion [22, 23, 29].

To achieve effective feature encoding, we designed
anisotropic downsampling layers and adopted the TS-
Mamba block from the Segmamba [32]. Specifically, in
Stage 1, the downsampling layer uses a convolutional ker-
nel size of (1, 7, 7). For the subsequent three layers, the
downsampling layers have a convolutional kernel size of (1,
2, 2). The decoder section employs a convolutional ker-
nel size of (1, 5, 5). This anisotropic design is particularly
advantageous for processing EM images, which exhibit in-
herent anisotropy. And the detailed network structures of
different parameters are provided in Table 2.

3. Discussion
3.1. Statistical Test
Table 3 presents a comprehensive statistical analysis of
different segmentation approaches on the Wafer4 dataset,
including standard deviations across multiple runs. The
results reveal several important findings. First, our To-
kenUnify method consistently achieves the best perfor-
mance across both post-processing algorithms (Waterz and
LMC), with the lowest mean VOI (1.0024 ± 0.0463 and
1.6604 ± 0.0086) and ARAND (0.0551 ± 0.0040 and
0.0592± 0.0002) scores. Second, the relatively small stan-
dard deviations of TokenUnify indicate its robustness and



Post. Method
Wafer4

V OIM ↓ V OIS ↓ V OI ↓ ARAND ↓
Supervised Methods

W
at

er
z

[1
1] Superhuman [19] 0.3392±0.0167 1.2247±0.0857 1.5639±0.0921 0.2050±0.0284

MALA [11] 0.6217±0.1266 1.5314±0.1123 2.1531±0.1004 0.1490±0.0476
PEA [15] 0.3943±0.0655 1.0036±0.1435 1.3979±0.2090 0.0963±0.0310
UNETR [13] 0.4454±0.0155 1.7979±0.1548 2.2433±0.1424 0.3244±0.0701
EMmamba 0.4353±0.0520 1.3018±0.0086 1.7371±0.0432 0.1872±0.0156

L
M

C
[3

] Superhuman [19] 0.2006±0.0054 2.1283±0.1378 2.3289±0.1427 0.2924±0.0408
MALA [11] 0.3094±0.0478 2.3802±0.1863 2.6869±0.1558 0.2303±0.0314
PEA [15] 0.2303±0.0870 1.6373±0.1289 1.8343±0.0732 0.1611±0.0152
UNETR [13] 0.1625±0.0144 3.3146±0.1391 3.4772±0.1272 0.6600±0.0304
EMmamba 0.1594±0.0005 2.0921±0.0300 2.2515±0.0298 0.2104±0.0113

Self-Supervised Methods

W
at

er
z

[1
1]

Random 0.4353±0.0520 1.3018±0.0086 1.7371±0.0432 0.1872±0.0156
MAE [14] 0.2363±0.0212 1.0782±0.0251 1.3144±0.0444 0.0967±0.0097
BYOL [12] 0.2615±0.0178 0.9850±0.0286 1.2465±0.0464 0.0892±0.0076
dbMIM [6] 0.2367±0.0126 0.8683±0.0124 1.1050±0.0250 0.0682±0.0062
MS-Con-EM [7] 0.2412±0.0157 0.9018±0.0202 1.1430±0.0359 0.0718±0.0089
TokenUnify 0.2124±0.0172 0.8047±0.0057 1.0024±0.0463 0.0551±0.0040

L
M

C
[3

]

Random 0.1594±0.0005 2.0921±0.0300 2.2515±0.0298 0.2104±0.0113
MAE [14] 0.1342±0.0020 1.9014±0.0286 2.0356±0.0301 0.1420±0.0023
BYOL [12] 0.1486±0.0053 1.7835±0.0342 1.9321±0.0395 0.1256±0.0087
dbMIM [6] 0.1457±0.0037 1.6293±0.0145 1.7750±0.0182 0.0812±0.0043
MS-Con-EM [7] 0.1475±0.0025 1.6652±0.0183 1.8127±0.0208 0.0876±0.0058
TokenUnify 0.1417±0.0022 1.5186±0.0076 1.6604±0.0086 0.0592±0.0002

Table 3. Quantitative comparison of segmentation results on Wafer4 dataset with standard deviations. Methods are categorized into
supervised and self-supervised approaches. All self-supervised methods use the same EMmamba backbone. ”Random” refers to EMmamba
without any pretraining. The best results are in bold and the second best results are underlined.

stability compared to other methods. Notably, when us-
ing Waterz post-processing, TokenUnify demonstrates ap-
proximately 9.3% improvement in VOI over the second-
best method (dbMIM). The supervised methods generally
exhibit higher variance, suggesting their greater sensitiv-
ity to initialization and training conditions. Among the
self-supervised approaches, domain-specific methods (To-
kenUnify and dbMIM) significantly outperform general-
purpose methods (MAE and BYOL), confirming the impor-
tance of domain-adapted self-supervised learning for elec-
tron microscopy image segmentation. Furthermore, all self-
supervised methods substantially outperform the random
initialization baseline, validating the effectiveness of pre-
training strategies in this domain.

3.2. Preliminary Exploration of TokenUnify on Nat-
ural Images

To evaluate the generalizability of TokenUnify beyond elec-
tron microscopy data, we conducted preliminary experi-
ments on natural images using the LAION-5B dataset [28].
These experiments serve to validate whether the comple-
mentary prediction mechanisms of TokenUnify yield simi-
lar benefits for general visual data with different statistical

properties than EM volumes.

Experimental Setup. We pretrained two models on the
LAION-5B dataset for 800 epochs: a standard autoregres-
sive model and our TokenUnify approach. Both models pro-
cess images by dividing them into non-overlapping patches
of size 16×16 and 8×8, respectively. For evaluation, we
reconstructed images by sequentially predicting patches:
given the first k patches of an image, we predicted the
(k+ 1)-th patch, and continued this process to generate the
complete image. We quantitatively assessed reconstruction
quality using the Peak Signal-to-Noise Ratio (PSNR) met-
ric and selected the high-resolution Kodak dataset [18] as
our test benchmark due to its diverse collection of natural
scenes.

Results and Analysis. Figure 3 presents qualitative com-
parisons between the original Kodak images and their re-
constructions using both approaches. Visually, TokenUnify
produces reconstructions with sharper details, more accu-
rate colors, and better preservation of complex textures
compared to the standard autoregressive approach. This is
particularly evident in regions with fine details like foliage,
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Figure 3. Shows the reconstruction result of selected Kodak dataset, images are divided into different sizes of patches. We use the
TokenUnify and Autoregressive models to reconstruct each image, respectively.

water surfaces, and intricate patterns.
The quantitative results in Table 4 confirm these obser-

vations, with TokenUnify consistently outperforming the
autoregressive baseline across all 24 Kodak images. For
16×16 patch size, TokenUnify achieves an average PSNR
improvement of 3.00 dB over the autoregressive approach,
with gains ranging from 2.06 dB to 4.45 dB. When using
smaller 8×8 patches, TokenUnify maintains its advantage
with an average improvement of 1.13 dB, although the mar-
gin narrows as the finer patch size provides more contextual
information to both models.

Notably, the performance gap between TokenUnify and
the autoregressive approach is more pronounced for com-
plex scenes with diverse textures (e.g., images 3.png, 4.png,
and 12.png show improvements of 4.45 dB, 3.80 dB, and
4.08 dB respectively). This suggests that TokenUnify’s
multi-task prediction approach is particularly effective at

modeling the complex statistical relationships in natural im-
ages, similar to our findings with EM data.

These preliminary results indicate that TokenUnify’s hi-
erarchical predictive coding framework generalizes well to
natural images, demonstrating its potential as a universal vi-
sual representation learning approach. The consistent per-
formance improvements across diverse image types suggest
that the complementary nature of random, next-token, and
next-all token prediction is fundamental to capturing rich
visual structure, regardless of the specific visual domain.

4. Theoretical Foundations
This section presents a comprehensive theoretical analysis
that rigorously motivates our hierarchical predictive cod-
ing framework. We begin by establishing the fundamental
limitations of conventional masked autoencoder approaches
when applied to high-dimensional spaces. Subsequently,



Kodak Name 16×16 Autoregress 16×16 TokenUnify 8×8 Autoregress 8×8 TokenUnify
1.png 19.249 21.549 (+2.300) 21.247 21.990 (+0.743)
2.png 24.662 27.321 (+2.659) 27.269 27.799 (+0.530)
3.png 22.665 27.113 (+4.448) 26.851 28.110 (+1.259)
4.png 22.353 26.152 (+3.799) 25.466 26.713 (+1.247)
5.png 15.353 18.859 (+3.506) 18.437 19.847 (+1.410)
6.png 20.139 22.376 (+2.237) 21.661 23.064 (+1.403)
7.png 19.990 23.170 (+3.180) 23.334 24.479 (+1.145)
8.png 15.146 18.169 (+3.023) 17.829 18.770 (+0.941)
9.png 22.080 24.918 (+2.838) 24.959 25.957 (+0.998)

10.png 22.239 25.213 (+2.974) 25.042 25.936 (+0.894)
11.png 20.289 22.536 (+2.247) 22.638 23.723 (+1.085)
12.png 21.854 25.929 (+4.075) 25.806 27.005 (+1.199)
13.png 15.946 18.494 (+2.548) 17.657 18.969 (+1.312)
14.png 18.107 21.227 (+3.120) 20.696 22.195 (+1.499)
15.png 20.750 24.659 (+3.909) 25.321 26.111 (+0.790)
16.png 23.216 25.887 (+2.671) 25.334 26.694 (+1.360)
17.png 20.672 24.346 (+3.674) 24.220 25.614 (+1.394)
18.png 19.959 22.017 (+2.058) 21.249 22.336 (+1.087)
19.png 22.394 25.062 (+2.668) 24.094 25.384 (+1.290)
20.png 21.478 24.723 (+3.245) 24.124 25.346 (+1.222)
21.png 17.503 20.149 (+2.646) 19.567 20.366 (+0.799)
22.png 19.947 23.003 (+3.056) 22.365 23.545 (+1.180)
23.png 17.807 20.315 (+2.508) 19.781 20.959 (+1.178)
24.png 22.111 24.780 (+2.669) 24.313 25.472 (+1.159)

Table 4. Presents the PSNR results of reconstructing 24 images from the Kodak dataset using TokenUnify and Autoregress. The experi-
ments were conducted with patch sizes of 16x16 and 8x8.

we demonstrate the theoretical advantages of autoregressive
models for processing long-range visual data. Finally, we
establish the complementary nature of our multiple predic-
tion tasks from an information-theoretic perspective, pro-
viding a unified theoretical foundation for our approach.

4.1. Error Accumulation Analysis
We establish a rigorous theoretical framework for analyz-
ing error accumulation properties in autoregressive models
and demonstrate that our next-all token prediction strategy
achieves superior asymptotic scaling behavior compared to
conventional approaches.

Assumption 1. Let ϵ(i)j denote the prediction error for to-
ken j when conditioned on context x<i. We impose the fol-
lowing regularity conditions:
1. Bounded conditional variance: E[(ϵ(i)j )2|x<i] ≤ σ2 for

all i, j, where σ2 > 0 is a finite constant.
2. Conditional independence: E[ϵ(i)j ϵ

(k)
j |x<i, x<k] = 0

for i ̸= k.

3. Function regularity: The prediction function fθ satisfies
standard Lipschitz continuity and differentiability condi-
tions.

Theorem 2. Under Assumption 1, the expected squared er-
ror of our next-all prediction strategy scales as O(

√
K),

whereas standard autoregressive models exhibit O(K) scal-
ing, where K denotes the sequence length.

Proof. We establish the result through a systematic compar-
ison of error scaling behaviors between standard autoregres-
sive models and our proposed next-all prediction approach.

Step 1: Error Analysis for Standard Autoregressive
Models. Consider the standard autoregressive prediction
x̂i = fθ(x<i). The cumulative squared error accumulates
linearly:

E

[
K∑
i=1

ϵ2i

]
=

K∑
i=1

E[ϵ2i ] (7)

≤
K∑
i=1

σ2 = Kσ2 = O(K) (8)



This linear accumulation constitutes a fundamental lim-
itation of sequential prediction schemes.

Step 2: Next-All Prediction Framework. Our method-
ology generates predictions for all future tokens from each
contextual position. Specifically, for position j, we obtain j
distinct predictions:

x̂
(1)
j , x̂

(2)
j , . . . , x̂

(j)
j

where x̂
(i)
j = f

(j)
θ (x<i) represents the prediction of token

j based on context x<i. We construct the final prediction
through ensemble averaging:

x̃j =
1

j

j∑
i=1

x̂
(i)
j

Step 3: Single Position Error Analysis. The aggre-
gated prediction error at position j is given by:

ϵ̃j = x̃j − xj =
1

j

j∑
i=1

(x̂
(i)
j − xj) (9)

=
1

j

j∑
i=1

ϵ
(i)
j (10)

Computing the expected squared error:

E[ϵ̃2j ] = E

(1

j

j∑
i=1

ϵ
(i)
j

)2
 (11)

=
1

j2
E

 j∑
i=1

(ϵ
(i)
j )2 + 2

∑
1≤i<k≤j

ϵ
(i)
j ϵ

(k)
j

 (12)

=
1

j2

j∑
i=1

E[(ϵ(i)j )2] +
2

j2

∑
1≤i<k≤j

E[ϵ(i)j ϵ
(k)
j ] (13)

By the conditional independence assumption (Assump-
tion 1(2)), all cross-terms vanish:

E[ϵ̃2j ] =
1

j2

j∑
i=1

E[(ϵ(i)j )2] (14)

≤ 1

j2

j∑
i=1

σ2 =
σ2

j
(15)

Step 4: Preliminary Total Error Bound. Summing
across all positions yields:

E

 K∑
j=1

ϵ̃2j

 ≤ K∑
j=1

σ2

j
(16)

= σ2
K∑
j=1

1

j
(17)

= σ2HK (18)

≤ σ2(logK + 1) (19)
= O(logK) (20)

where HK denotes the K-th harmonic number.
Step 5: Refined Analysis with Context-Dependent

Variance. To establish the sharper O(
√
K) bound, we in-

corporate the empirically observed phenomenon that pre-
diction accuracy improves with increased context length.
Specifically, in neural prediction tasks, the effective vari-
ance exhibits the decay property:

E[(ϵ(i)j )2] ≤ σ2

√
i

This reflects the fundamental principle that longer con-
texts provide more informative signals for prediction. Un-
der this refined assumption:

E[ϵ̃2j ] ≤
1

j2

j∑
i=1

σ2

√
i

(21)

=
σ2

j2

j∑
i=1

i−1/2 (22)

≤ σ2

j2
· 2
√

j =
2σ2

j3/2
(23)

where we used the integral approximation∑j
i=1 i

−1/2 ≤
∫ j

1
x−1/2dx = 2

√
j.

Therefore, the total expected error satisfies:

E

 K∑
j=1

ϵ̃2j

 ≤ 2σ2
K∑
j=1

j−3/2 (24)

≤ 2σ2

∫ K

1

x−3/2dx (25)

= 2σ2
[
−2x−1/2

]K
1

(26)

= 4σ2
(
1−K−1/2

)
(27)

= O(
√
K) (28)

This completes the proof of the claimed scaling behavior.

Remark 1. The fundamental improvement from O(K) to
O(
√
K) scaling arises through two complementary mecha-

nisms:
1. Error propagation elimination: Unlike sequential pre-

diction schemes where errors compound through the pre-
diction chain, our approach generates independent pre-
dictions from each context, thereby eliminating cascad-
ing error effects.



2. Implicit ensemble regularization: The averaging over
multiple prediction horizons provides natural variance
reduction, analogous to ensemble methods in statistical
learning.

Remark 2. The conditional independence assumption (As-
sumption 1(2)) is theoretically justified because predictions
generated from distinct contexts x<i and x<k rely on funda-
mentally different information sets. Given their respective
conditioning contexts, the prediction errors exhibit approx-
imate uncorrelatedness, making this assumption reasonable
in practical applications.

4.2. Limitations of MAE in High Dimensions
We present a comprehensive theoretical analysis of the
fundamental limitations exhibited by Mean Absolute Error
(MAE) estimators in high-dimensional sparse linear regres-
sion. Our analysis provides rigorous error bounds and es-
tablishes the precise conditions under which these limita-
tions manifest.

Assumption 2. Consider the high-dimensional linear re-
gression model:

y = Xβ∗ + ε, (29)

where y ∈ Rn represents the observed responses, X ∈
Rn×p denotes the known design matrix, β∗ ∈ Rp is the un-
known sparse parameter vector, and ε ∈ Rn represents the
noise term. We impose the following structural conditions:
(a) Sparsity condition: The true parameter β∗ is s-sparse,

i.e., ∥β∗∥0 ≤ s where s≪ p.
(b) Sub-Gaussian noise: The noise vector ε has indepen-

dent sub-Gaussian entries with zero mean and finite
variance proxy σ2:

E[εi] = 0, E[ε2i ] ≤ σ2, (30)

P (|εi| ≥ tσ) ≤ 2 exp

(
− t2

2

)
, ∀t > 0,∀i (31)

(c) Restricted Isometry Property: The design matrix X
satisfies the RIP condition of order 2s with constant
δ2s ∈ (0, δ∗), where δ∗ < 1 is a universal constant.
Specifically, for all vectors v ∈ Rp with ∥v∥0 ≤ 2s:

(1− δ2s)∥v∥22 ≤
1

n
∥Xv∥22 ≤ (1 + δ2s)∥v∥22 (32)

Theorem 3. Under Assumption 2, consider the ℓ1-
regularized MAE estimator (least absolute deviations with
Lasso penalty):

β̂ = argmin
β∈Rp

{
1

n
∥y −Xβ∥1 + λ∥β∥1

}
, (33)

where the regularization parameter is chosen as λ =

C0σ
√

log p
n with C0 > 0 sufficiently large.

Then, provided that n is sufficiently large and δ2s < δ∗,
there exist universal constants C > 0 and c > 0 such that
with probability at least 1− p−c:

∥β̂ − β∗∥2 ≤ Cσ

√
s log p

n
(34)

Proof. We establish the error bound through a systematic
analysis involving cone constraints, concentration inequali-
ties, and the restricted isometry property.

Step 1: Error Decomposition and Notation.
Define the estimation error as h = β̂ − β∗. Let S =

supp(β∗) denote the support set of the true parameter, with
|S| ≤ s. We decompose the error vector as:

h = hS + hSc , (35)

where hS and hSc represent the restrictions of h to the sup-
port and its complement, respectively.

Step 2: Optimality Condition Analysis.
Since β̂ minimizes the objective function in (33), we

have the fundamental inequality:

1

n
∥y −Xβ̂∥1 + λ∥β̂∥1 ≤

1

n
∥y −Xβ∗∥1 + λ∥β∗∥1

(36)

Substituting the model equation y = Xβ∗ + ε and rear-
ranging:

1

n
∥ε−Xh∥1 −

1

n
∥ε∥1 + λ(∥β̂∥1 − ∥β∗∥1) ≤ 0 (37)

Step 3: ℓ1 Norm Relationships.
Using the triangle inequality and the decomposition β̂ =

β∗ + h:

∥β̂∥1 = ∥β∗
S + hS∥1 + ∥hSc∥1 (38)

∥β∗∥1 = ∥β∗
S∥1 (39)

By the reverse triangle inequality:

∥β∗
S + hS∥1 ≥ ∥β∗

S∥1 − ∥hS∥1 (40)

Therefore:

∥β̂∥1 − ∥β∗∥1 ≥ −∥hS∥1 + ∥hSc∥1 (41)

Step 4: Concentration of the Noise Component.
Define the random vector ν = 1

nX
T ε. Under the sub-

Gaussian assumption, standard concentration results yield:

P

(
∥ν∥∞ ≤ C1σ

√
log p

n

)
≥ 1− p−c (42)

for appropriate constants C1, c > 0.
Step 5: Lower Bound for the Residual Term.



For any subgradient z ∈ ∂∥ε∥1 (i.e., ∥z∥∞ ≤ 1 and
zT ε = ∥ε∥1), we have:

1

n
∥ε−Xh∥1 −

1

n
∥ε∥1 ≥

1

n
zT (ε−Xh)− 1

n
∥ε∥1 (43)

= − 1

n
zT (Xh) (44)

= −hT νrestricted (45)

where νrestricted represents the appropriately restricted ver-
sion of ν.

Using Hölder’s inequality and the concentration bound:

∣∣hT νrestricted
∣∣ ≤ ∥h∥1∥ν∥∞ ≤ C1σ

√
log p

n
∥h∥1 (46)

Step 6: Derivation of the Cone Constraint.
Combining the results from Steps 2-5 with inequality

(37):

−C1σ

√
log p

n
∥h∥1 + λ(−∥hS∥1 + ∥hSc∥1) ≤ 0 (47)

Rearranging and using the choice λ = C0σ
√

log p
n with

C0 > 2C1:

λ∥hSc∥1 ≤ C1σ

√
log p

n
∥h∥1 + λ∥hS∥1 (48)

≤ C1σ

√
log p

n
(∥hS∥1 + ∥hSc∥1) + λ∥hS∥1

(49)

= (C1σ

√
log p

n
+ λ)∥hS∥1 + C1σ

√
log p

n
∥hSc∥1

(50)

Since λ = C0σ
√

log p
n and C0 > 2C1:

(λ− C1σ

√
log p

n
)∥hSc∥1 ≤ (C1σ

√
log p

n
+ λ)∥hS∥1

(51)
λ

2
∥hSc∥1 ≤ 2λ∥hS∥1 (52)

This yields the crucial cone constraint:

∥hSc∥1 ≤ 4∥hS∥1 (53)

Step 7: Application of the Restricted Isometry Prop-
erty.

The cone constraint ensures that h belongs to a re-
stricted set where the RIP condition provides effective con-
trol. Specifically, for vectors satisfying ∥vSc∥1 ≤ 4∥vS∥1,
we can establish the restricted eigenvalue condition:

1

n
∥Xh∥22 ≥ κ∥h∥22 (54)

where κ = 1−δ2s−γ
2 for some small constant γ > 0 that

depends on the cone structure.
Step 8: Final Error Bound.
From the cone constraint and Cauchy-Schwarz inequal-

ity:

∥h∥1 = ∥hS∥1 + ∥hSc∥1 ≤ 5∥hS∥1 (55)

≤ 5
√
s∥hS∥2 ≤ 5

√
s∥h∥2 (56)

Using the basic inequality and concentration results:

κ∥h∥22 ≤
1

n
∥Xh∥22 (57)

≤ 2∥ν∥∞∥h∥1 + 2λ∥hS∥1 (58)

≤ 2C1σ

√
log p

n
· 5
√
s∥h∥2 + 2λ

√
s∥h∥2 (59)

= (10C1 + 2C0)σ

√
s log p

n
∥h∥2 (60)

Dividing by ∥h∥2 and solving:

∥h∥2 ≤
(10C1 + 2C0)σ

√
s log p

κ
√
n

= Cσ

√
s log p

n
(61)

where C = 10C1+2C0

κ is a universal constant.
This establishes the desired estimation error bound and

completes the proof.

Remark 3. This theorem establishes that under appro-
priate sparsity assumptions and design matrix conditions,
the ℓ1-regularized MAE estimator achieves minimax opti-
mal convergence rates up to logarithmic factors. How-
ever, the analysis reveals fundamental challenges in high-
dimensional settings where the ambient dimension p grows
exponentially with the sample size n, highlighting the need
for more sophisticated approaches in such regimes.

4.3. Advantages of Autoregressive Models
We begin by establishing the mathematical framework for
autoregressive processes. Consider a time series {yt}Tt=1

generated by an autoregressive model of order p, denoted
AR(p), which satisfies the following stochastic difference
equation:

yt =

p∑
i=1

βiyt−i + εt, t = p+ 1, . . . , T, (62)

where {εt}Tt=1 constitutes a sequence of independent and
identically distributed Gaussian random variables with
E[εt] = 0 and Var(εt) = σ2 <∞ for all t.

The fundamental theoretical property of autoregressive
models that underlies their practical utility is encapsulated
in the following theorem, which characterizes the asymp-
totic behavior of prediction accuracy as model complexity
increases.



Theorem 4. Let {yt} be generated by a stationary AR(∞)
process with absolutely summable coefficients

∑∞
i=1 |βi| <

∞. Under standard regularity conditions for parameter
identifiability and assuming sufficient sample size T → ∞,
the one-step-ahead prediction mean squared error of the
least squares estimator β̂(p) = (β̂1, . . . , β̂p)

⊤ satisfies:

lim
p→∞

E
[
(yt − ŷt(p))

2
]
= σ2, (63)

where ŷt(p) denotes the one-step-ahead prediction based
on the AR(p) approximation.

Proof. We proceed by decomposing the prediction error
into interpretable components and analyzing their asymp-
totic behavior.

For the AR(p) approximation, the least squares predictor
is given by:

ŷt(p) =

p∑
i=1

β̂iyt−i, (64)

where β̂i are the least squares estimates of the autoregres-
sive coefficients.

The prediction error can be expressed as:

et(p) = yt − ŷt(p)

= yt −
p∑

i=1

β̂iyt−i

=

p∑
i=1

βiyt−i + εt −
p∑

i=1

β̂iyt−i

=

p∑
i=1

(βi − β̂i)yt−i +

∞∑
i=p+1

βiyt−i + εt. (65)

This decomposition reveals three distinct sources of pre-
diction error. The mean squared prediction error is there-
fore:

E[et(p)2] = E

( p∑
i=1

(βi − β̂i)yt−i

)2


+ E


 ∞∑

i=p+1

βiyt−i

2


+ E[ε2t ] + 2E

[
εt

p∑
i=1

(βi − β̂i)yt−i

]

+ 2E

εt ∞∑
i=p+1

βiyt−i


+ 2E

 p∑
i=1

(βi − β̂i)yt−i

∞∑
j=p+1

βjyt−j

 .

(66)

We now analyze each term systematically:
Cross-terms: Under the assumption that {εt} is inde-

pendent of past observations and the strong mixing condi-
tions typical for stationary AR processes, the cross-terms
involving εt vanish:

E

[
εt

p∑
i=1

(βi − β̂i)yt−i

]
= 0, (67)

E

εt ∞∑
i=p+1

βiyt−i

 = 0. (68)

Estimation error term: As T →∞, the consistency of
the least squares estimator under standard regularity condi-
tions ensures:

E

( p∑
i=1

(βi − β̂i)yt−i

)2
→ 0. (69)

Approximation error term: Under the assumption of
absolutely summable coefficients, as p→∞:

E


 ∞∑

i=p+1

βiyt−i

2
→ 0. (70)

Remaining cross-term: The mixed term between esti-
mation and approximation errors also vanishes under appro-
priate conditions as both T →∞ and p→∞.

Combining these results, we obtain:

lim
p→∞

E[et(p)2] = E[ε2t ] = σ2, (71)

which completes the proof.

This theorem establishes a fundamental result: the pre-
diction error of an autoregressive model approaches the irre-
ducible noise level σ2 as the model order increases, becom-
ing asymptotically independent of the underlying model pa-
rameters. This convergence property constitutes a key the-
oretical advantage of autoregressive models, demonstrat-
ing their capacity to systematically reduce prediction er-
ror through judicious increases in model complexity while
maintaining statistical tractability.

4.4. Information-Theoretic Complementarity of
Multiple Prediction Tasks

Building on the preceding results, we establish the
complementary nature of our three prediction tasks
from an information-theoretic perspective. Let X =
{x1, x2, . . . , xK} represent a sequence of visual tokens ex-
tracted from an image, where each xi takes values in a
discrete vocabulary V . We define three distinct prediction



tasks: random token prediction, next-token prediction, and
next-all token prediction.

For any given token xi where i ∈ {1, 2, . . . ,K}, let
I(xi;xj) denote the mutual information between tokens xi

and xj . We characterize the information captured by each
prediction task through the following propositions.

Proposition 1 (Random Token Prediction Information).
For random token prediction, the expected information gain
when predicting a randomly masked token xi given the set
of unmasked tokens xMc is:

Ei,M[I(xi;xMc)] = Ei,M[H(xi)−H(xi|xMc)], (72)

where H(·) denotes the Shannon entropy, M ⊂
{1, 2, . . . ,K} is the set of masked indices with i ∈ M, and
Mc denotes the complement ofM.

Proposition 2 (Next-Token Prediction Information). For
next-token prediction, the information gain when pre-
dicting token xi given all preceding tokens x<i =
{x1, x2, . . . , xi−1} is:

I(xi;x<i) = H(xi)−H(xi|x<i). (73)

Proposition 3 (Next-All Token Prediction Information).
For next-all token prediction, the total information gain
when predicting all future tokens {xi, xi+1, . . . , xK} given
tokens x<i is:

I({xi, xi+1, . . . , xK};x<i)

= H({xi, xi+1, . . . , xK})
−H({xi, xi+1, . . . , xK}|x<i). (74)

Proof of Propositions 1–3. We provide detailed proofs for
each proposition.

Proof of Proposition 1: By the definition of mutual in-
formation between random variables X and Y , we have:

I(X;Y ) = H(X)−H(X|Y ).

For random token prediction, let i be a random variable rep-
resenting the index of the masked token, and let M be a
random variable representing the masking pattern. Then:

Ei,M[I(xi;xMc)] = Ei,M[H(xi)−H(xi|xMc)] (75)
= Ei,M[H(xi)]− Ei,M[H(xi|xMc)].

(76)

The linearity of expectation justifies the decomposition, es-
tablishing equation (72).

Proof of Proposition 2: This follows directly from the
definition of mutual information. For fixed tokens xi and
x<i:

I(xi;x<i) = H(xi)−H(xi|x<i),

which establishes equation (73).
Proof of Proposition 3: Let X≥i = {xi, xi+1, . . . , xK}

denote the set of all tokens from position i onwards. By the
definition of mutual information for joint random variables:

I(X≥i;x<i) = H(X≥i)−H(X≥i|x<i) (77)
= H({xi, xi+1, . . . , xK}) (78)
−H({xi, xi+1, . . . , xK}|x<i), (79)

which establishes equation (74).

To establish the complementarity of these prediction
tasks, we analyze their information-theoretic properties:

Theorem 5 (Information Complementarity). The three pre-
diction tasks capture distinct and complementary aspects of
the visual token sequence:
1. Random token prediction captures non-sequential spa-

tial correlations by maximizing

Ei,M[I(xi;xMc)], (80)

which encourages bidirectional contextual understand-
ing without dependence on token ordering.

2. Next-token prediction captures local sequential depen-
dencies by maximizing

K∑
i=2

I(xi;x<i), (81)

which promotes understanding of local structural coher-
ence following the tokenization order.

3. Next-all token prediction captures global structure and
long-range dependencies by maximizing

K−1∑
i=1

I({xi, xi+1, . . . , xK};x<i), (82)

which encourages comprehensive representation of hier-
archical image organization.

Proof of Theorem 5. The complementarity follows from
the distinct information sources each task accesses:

Disjoint Information Sources: Let Irand, Inext, and Iall
denote the information sets captured by random, next-token,
and next-all prediction, respectively. We show these sets
have minimal overlap:

1. Random token prediction accesses information
I(xi;xj) for arbitrary pairs (i, j) where j /∈ M, empha-
sizing non-sequential relationships.

2. Next-token prediction specifically targets I(xi;x<i),
focusing on causal dependencies within the chosen order-
ing.



3. Next-all prediction captures I(X≥i;x<i), which by
the chain rule of mutual information can be decomposed as:

I(X≥i;x<i) = I(xi;x<i) + I(xi+1;x<i|xi) (83)
+ · · ·+ I(xK ;x<i|xi, . . . , xK−1), (84)

revealing its emphasis on global conditional dependencies.
Complementary Coverage: The union of these in-

formation sources provides more comprehensive coverage
than any individual task, as formalized in the next re-
sult.

The total information captured by combining these tasks
can be expressed as:

Itotal = α · Ei,M[I(xi;xMc)]

+ β ·
K∑
i=2

I(xi;x<i)

+ γ ·
K−1∑
i=1

I({xi, . . . , xK};x<i), (85)

where α, β, γ > 0 are weighting parameters, and the ex-
pectations are taken over the appropriate distributions of in-
dices and masking patterns.

Corollary 6 (Information Maximization). For appropri-
ately chosen weights α, β, γ, maximizing the combined ob-
jective Itotal yields:

Itotal ≥ max{Irand, Inext, Iall},

where Irand, Inext, and Iall represent the information cap-
tured by each individual task.

Proof of Corollary 6. This follows immediately from the
non-negativity of mutual information and the complemen-
tary nature established in Theorem 5. Since the tasks ac-
cess largely disjoint information sources, their combination
provides strictly greater information coverage than any in-
dividual component.

Remark 4. The complementarity of these tasks ensures
that maximizing the combined objective Itotal enables Toke-
nUnify to extract more comprehensive information from vi-
sual data than any single prediction task in isolation. This
multi-task approach provides a more complete character-
ization of the underlying data distribution, leading to en-
hanced representation learning capabilities.

4.5. Theoretical Analysis of Latent Manifold Struc-
ture

In this section, we provide a rigorous mathematical anal-
ysis of the latent representation space induced by the To-
kenUnify framework. Specifically, we demonstrate how the

integration of multiple prediction objectives (random token,
next-token, and next-all token prediction) shapes the geo-
metric properties of the learned manifold, leading to a rep-
resentation space that naturally accommodates both local
and global aspects of neuronal morphology.

Preliminaries and Notation Let X =
{x1, x2, . . . , xK} ∈ Rd×K denote a sequence of vi-
sual tokens extracted from a volumetric EM image. The
model encodes these tokens into a latent space via an
encoder function fθ : Rd → Rd′

, where θ represents the
model parameters and d′ ≪ d in typical applications.

We define the latent manifold Mθ ⊂ Rd′
as the image

of the encoder over all valid input tokens:

Mθ = {fθ(x) ∈ Rd′
: x ∈ X} (86)

This manifold is equipped with the pullback Riemannian
metric gθ induced by the Fisher information matrix of the
encoder:

gθ(u, v) = Ex∼pdata [u
TJθ(x)

TJθ(x)v]

= Ex∼pdata [⟨Jθ(x)u, Jθ(x)v⟩Rd′ ] (87)

where Jθ(x) = ∂fθ(x)
∂x ∈ Rd′×d is the Jacobian of the en-

coder at input x.

Sectional Curvature Analysis Before proceeding, we es-
tablish precise definitions for the key geometric objects. Let
TpMθ denote the tangent space toMθ at point p. We de-
fine:

TMlocal := span{v ∈ TpMθ : ∥∇Lrandom(p) · v∥ ≥ α}
(88)

TMglobal := span{v ∈ TpMθ : ∥∇Lnext-all(p) · v∥ ≥ α}
(89)

for some threshold α > 0, where TMrandom ⊂ TMlocal and
TMnext-all ⊂ TMglobal.

The sectional curvature κθ(u, v) of the manifoldMθ for
two linearly independent tangent vectors u, v ∈ TpMθ is
given by:

κθ(u, v) =
R(u, v, v, u)

gθ(u, u)gθ(v, v)− gθ(u, v)2
(90)

where R is the Riemann curvature tensor associated with
the metric gθ.

Theorem 7 (Curvature Stratification in TokenUnify Man-
ifolds). Under the TokenUnify framework with prediction
objectives {Lrandom,Lnext,Lnext-all}, the sectional curvature



κθ of the learned manifoldMθ exhibits systematic stratifi-
cation correlated with the spatial scale of encoded features:

κθ(v1, v2) ≈

{
O(ϵ) (v1, v2) ∈ TMlocal

−O(δ) (v1, v2) ∈ TMglobal
(91)

More precisely, there exist constants ϵlocal, δglobal > 0 such
that for unit tangent vectors v1, v2:

|κθ(v1, v2)| ≤ ϵlocal when (v1, v2) ∈ TMrandom (92)
κθ(v1, v2) ≤ −δglobal when (v1, v2) ∈ TMnext-all (93)

Proof. We establish this result through a three-step analy-
sis of the manifold decomposition, local curvature compu-
tation, and global structure constraints.

Step 1: Manifold Decomposition
The TokenUnify training objective induces a natural

stratification of the latent manifold. We decompose Mθ

into submanifolds corresponding to the dominant influence
of each prediction task:

Mθ =Mrandom ∪Mnext ∪Mnext-all (94)

where:

Mrandom := {p ∈Mθ : ∥∇Lrandom(p)∥
> ∥∇Lk(p)∥,∀k ̸= random} (95)

Mnext-all := {p ∈Mθ : ∥∇Lnext-all(p)∥
> ∥∇Lk(p)∥,∀k ̸= next-all} (96)

andMnext is defined analogously.
Step 2: Local Feature Curvature Analysis
For directions v1, v2 associated primarily with local fea-

ture encoding (i.e., directions in TMrandom), the curvature
tensor can be expressed as:

R(v1, v2, v2, v1) = Ex∼pdata [⟨∇v1∇v2fθ(x),∇v2∇v1fθ(x)⟩]
− Ex∼pdata [⟨∇[v1,v2]fθ(x),∇[v1,v2]fθ(x)⟩]

(97)

The key insight is that for local feature directions, the
random token prediction objective Lrandom encourages the
encoder fθ to behave approximately linearly within small
spatial neighborhoods. This is because local patches ex-
hibit relatively homogeneous statistical properties, leading
to smooth, low-curvature encodings.

Formally, for local feature directions, we have the ap-
proximate commutativity:

∇v1∇v2fθ(x) ≈ ∇v2∇v1fθ(x) +O(ϵlocal) (98)

This implies that the Lie bracket term vanishes:
[v1, v2] = O(ϵlocal), and consequently:

R(v1, v2, v2, v1) = O(ϵ2local) (99)

Therefore, κθ(v1, v2) = O(ϵlocal) for directions encod-
ing local features.

Step 3: Global Structure Curvature Analysis
For directions v1, v2 associated with global structure en-

coding (directions in TMnext-all), the analysis is more in-
tricate. The next-all token prediction objective requires the
encoder to capture long-range dependencies and branching
patterns in neuronal morphology.

Consider a token sequence {x≤i} up to position i, with
multiple valid continuations {x(1)

>i , x
(2)
>i , . . . , x

(B)
>i } repre-

senting different possible branching structures. The encoder
must satisfy two competing constraints:

Separation Constraint: Different branching patterns
must be distinguishable:

∥fθ(x(a)
i+j)− fθ(x

(b)
i+j)∥ ≥ δ > 0 ∀a ̸= b,∀j > 0 (100)

Continuity Constraint: Sequential tokens within the
same branch remain close:

∥fθ(x(a)
i+j)− fθ(x

(a)
i+j−1)∥ ≤ ϵ ∀a,∀j > 0 (101)

These constraints necessitate a representation space with
negative sectional curvature. To see this rigorously, con-
sider the exponential map expp : TpMθ → Mθ at a point
p = fθ(xi) representing the branching location.

The separation constraint requires that geodesics em-
anating from p in different directions (corresponding to
different branches) diverge at least linearly with distance.
However, the continuity constraint limits the tangent space
dimension available for encoding these branches.

By the Gauss-Bonnet theorem applied to geodesic trian-
gles formed by branching paths, the requirement for expo-
nential divergence of B branches in a d′-dimensional space
with B ≫ d′ implies:

κθ(v1, v2) ≤ −
logB

4π · Area(△)

≤ −δglobal (102)

where △ denotes a typical geodesic triangle in the branch-
ing region, and δglobal > 0 depends on the branching com-
plexity of neuronal structures.

This completes the proof of Theorem 7.

The curvature stratification result has important im-
plications for the representational capacity of the Toke-
nUnify framework. The near-zero curvature in local fea-
ture directions ensures stable and efficient encoding of fine-
grained morphological details, while the negative curvature
in global structure directions provides the geometric flex-
ibility necessary for representing complex branching pat-
terns and long-range dependencies inherent in neuronal ar-
chitectures.



4.6. Convergence Analysis of Alternating Optimiza-
tion

We establish the convergence guarantee for our alternating
optimization scheme under standard assumptions in non-
convex stochastic optimization.

Theorem 8 (Formal Convergence Guarantee). Consider
the alternating optimization algorithm with mode-switching
probability distribution Pt at iteration t. Under the follow-
ing regularity conditions:
(A1) L-Smoothness: There exists a constant L > 0

such that for all θ, θ′ ∈ Rd and any mode m ∈
{AR,Mask}:

∥∇Lm(θ)−∇Lm(θ′)∥ ≤ L∥θ − θ′∥ (103)

(A2) Bounded Variance: The mode-switching introduces
bounded noise with variance parameter σ2

mode > 0
such that:

Emt∼Pt
[∥∇Lmt

(θt)−∇L(θt)∥2] ≤ σ2
mode (104)

for all t ≥ 1, where L(θt) := Em∼Pt
[Lm(θt)].

(A3) Diminishing Step Size: The learning rate follows the
schedule ηt = η0(1+η20L

2t)−1/2 with η0 ∈ (0, 1/L].
Then the sequence {θt}Tt=1 generated by the alternating

optimization satisfies:

min
1≤t≤T

E[∥∇L(θt)∥2] ≤
4(L(θ1)− L∗) + 2Lη20(1 + σ2

mode)√
T

· (1 + log T + σ2
mode) (105)

Proof. Step 1: Gradient Decomposition
We introduce the natural filtration Ft =

σ(θ1, . . . , θt,m1, . . . ,mt−1) and decompose the stochastic
gradient as:

gt := ∇Lmt
(θt) = ∇L(θt) + ϵt (106)

where ϵt := ∇Lmt
(θt) − ∇L(θt) represents the mode-

switching noise with E[ϵt|Ft] = 0.
Step 2: One-Step Analysis
By L-smoothness and the update rule θt+1 = θt − ηtgt:

E[L(θt+1)|Ft] ≤ L(θt) + ⟨∇L(θt),−ηtgt⟩+
Lη2t
2
∥gt∥2

(107)

= L(θt)− ηt∥∇L(θt)∥2 +
Lη2t
2
∥gt∥2

(108)

Expanding ∥gt∥2 = ∥∇L(θt)∥2+2⟨∇L(θt), ϵt⟩+∥ϵt∥2
and taking conditional expectation:

E[L(θt+1)|Ft] ≤ L(θt)− ηt

(
1− Lηt

2

)
∥∇L(θt)∥2

+
Lη2t
2

E[∥ϵt∥2|Ft] (109)

Step 3: Telescoping Sum
Taking total expectation and using assumption (A2), we

obtain:

E[L(θt+1)] ≤ E[L(θt)]−
ηt
2
E[∥∇L(θt)∥2] +

Lη2t σ
2
mode

2
(110)

where we used the fact that ηt ≤ 1/L implies 1− Lηt/2 ≥
1/2.

Telescoping from t = 1 to T :

T∑
t=1

ηt
2
E[∥∇L(θt)∥2] ≤ L(θ1)− L∗ +

Lσ2
mode

2

T∑
t=1

η2t

(111)
Step 4: Step Size Analysis
For the chosen step size schedule, we have the crucial

bounds:

T∑
t=1

η2t ≤ η20 +
1 + log T

L2
(112)

T∑
t=1

ηt ≥
η0
√
T√

1 + η20L
2T

(113)

The first bound follows from the integral comparison∑T
t=1(1 + η20L

2t)−1 ≤ 1 +
∫ T

1
(1 + η20L

2x)−1dx, while
the second uses the concavity of the square root function.

Step 5: Final Rate
Combining the telescoping bound with Jensen’s inequal-

ity:

min
1≤t≤T

E[∥∇L(θt)∥2] ≤
2(L(θ1)− L∗) + Lη20σ

2
mode∑T

t=1 ηt

+
σ2

mode(1 + log T )

L
∑T

t=1 ηt
(114)

≤ C(1 + log T + σ2
mode)√

T
(115)

where the constant C depends polynomially on the problem
parameters.

4.6.1. Remarks on the Analysis
Remark 5 (Optimality). The convergence rate
O(log T/

√
T ) is optimal for non-convex stochastic

optimization, matching known lower bounds even in the
single-mode case.

Remark 6 (Mode-Switching Effect). The variance param-
eter σ2

mode quantifies the additional difficulty introduced by
alternating between training modes. When σ2

mode = 0 (no
mode switching), we recover the standard O(log T/

√
T )

rate.



Remark 7 (Technical Innovation). Our proof technique ex-
tends classical SGD analysis to handle the mode-dependent
gradient variance through careful decomposition of the
noise term ϵt, which captures the stochastic nature of the
mode selection process.

4.7. Connecting Theory to Practice
The above theoretical results have direct implications for
our model design. The limitations of MAE in high di-
mensions suggest that simply scaling up masked prediction
models will yield diminishing returns for complex EM data.
Similarly, the asymptotic optimality of autoregressive mod-
els motivates our use of Mamba-based sequence modeling,
which can efficiently capture long-range dependencies. The
information-theoretic complementarity of different predic-
tion tasks justifies our unified approach that combines ran-
dom, next-token, and next-all prediction objectives.

In practice, these theoretical insights translate to sev-
eral key design choices in TokenUnify. We use a multi-
task training objective that combines all three prediction
tasks, maximizing the total information extracted from the
data. We employ a Mamba-based architecture that effi-
ciently models long-range dependencies in tokenized EM
data. Additionally, we implement a progressive tokeniza-
tion strategy that respects the natural structure of EM vol-
umes.

The empirical results presented in the main paper vali-
date these theoretical motivations, demonstrating that Toke-
nUnify achieves superior performance and scaling proper-
ties compared to conventional approaches.

5. Social Impact and Future Work
The favorable scaling laws of TokenUnify present the op-
portunity to train a unified and generic visual feature ex-
tractor, which holds significant importance for visual tasks.
A unified visual feature extractor can substantially reduce
the cost of fine-tuning models for different visual tasks,
thereby facilitating the application of visual technologies
across various domains. We have currently validated the
effectiveness of TokenUnify on long-sequence 3D biolog-
ical images. Moving forward, we plan to further ex-
plore the performance of TokenUnify on natural images
and other downstream tasks. Moreover, TokenUnify can be
extended to multimodal domains such as image-text tasks
[8, 21], demonstrating its utility in multimodal applications.
We will also continue to investigate model lightweighting
[9, 10] and efficient fine-tuning strategies [20, 24]. We
believe that TokenUnify offers a promising approach for
building large-scale, efficient visual pre-training models,
contributing to advancements in the visual domain.
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