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6. Limitations

Despite achieving significant speedups, Skip-DiT inherits
limitations from its DiT foundation. including high compu-
tational demands, reliance on large-scale training data, and
quadratic complexity that hinders high-resolution generation.
Furthermore, Skip-DiT introduces a marginal parameter
overhead (5.5% for class-to-image, 3.5% for text-to-video)
and extra GPU memory (scales with the batch size N ), re-
quiring an additional N → 0.37% for the class-to-image
model and N → 4.55% for the text-to-video model. These
models remain feasible for deployment with proper N .

7. Supplementary Experiments

Analysis of Block Selection for Caching To identify the
optimal block for caching, we analyze the feature similarity
across timesteps in the final three blocks of Latte-T2V (Table
7). Our analysis reveals that caching at block 27, the last
DiT block, yields the best performance. This block, which is
connected to block 0 via the primary Long Skip Connection
(LSC), not only exhibits maximum feature similarity but also
enables the highest speedup. These results demonstrate the
superior caching efficiency achieved by Skip-DiT.

Table 7. Connection selection for caching in the text-to-video task.
The best metrics are emphasized in bold.

LSC Cached Similarity(%)→ VBench(%) → PSNR → LPIPS ↑ SSIM →

0 [1,26] 99.88 75.51 29.52 0.06 0.89

1 [2,25] 99.86 75.44 29.65 0.06 0.89

2 [3,24] 99.66 75.49 29.44 0.06 0.88

Comparison in Few-Step Generation We benchmarked
Skip-DiT against a vanilla DiT in a few-step text-to-video
generation scenario, using a 5 and 10-step DDIM scheduler
instead of the standard 50 steps. As shown in Table 8, while
the vanilla DiT holds a slight advantage in the SSIM metric,
Skip-DiT achieves superior visual quality and semantic
consistency. These results again validate the balanced and
robust performance of our architecture, even in a highly
accelerated, few-step setting.

8. Detailed Proof of Theorems

Consider an ideal denoising diffusion transformer M with L

identical blocks, where the denoising capability induces the
following fundamental properties:

Table 8. Text-to-video generation performance under the few-step
scenario. The best metrics are emphasized in bold.

NFE Model !VBench(%) PSNR → LPIPS ↑ SSIM →

10 steps
Latte ↑1.73 15.96 0.47 0.61

Skip-DiT ↑0.94 16.18 0.43 0.59

5 steps
Latte ↑9.40 12.94 0.73 0.53

Skip-DiT ↑8.55 13.17 0.69 0.50

• Noise Reduction Invariance: Each transformer block Tl
strictly reduces noise magnitude of input h. This directly
implies the Jacobian spectral norm (ωmax) constraint:

ωmax

(
εTl
εh

)
↭ ϑl < 1 (9)

• Transformer Blocks Homogeneity: Identical noise reduc-
tion ratio across layers ϑl = ϑ, ↑l ↓ {1, ..., L}. Thus,
the complete model satisfies

ωmax(M) =
L∏

l=1

ϑ = ϑ
L ↔ 1 (10)

8.1. Theorem1

The spectral norm of the Jacobian matrix of DiT with Long-
Skip-Connections is controlled tighter than that of Vanilla
DiT M , making the Skip-DiT model more robust, numeri-
cally stable, and capable of converging faster.

Proof. Define layer transformations for L/2 < l ↗ L and
their Jacobian matrices, where T denotes the Transformer
block and 0 < ϖ < 1:

h
vanilla
l+1 = T (hvanilla

l
), hskip

l+1 = (1↘ ϖ) · T (hskip
l

) + ϖ · hskip
L↓l

.

The corresponding Jacobian matrices J are:

J
vanilla
l

=
εT (hl)

εhl

, J
skip
l

= (1↘ ϖ) · εT (hl)

εhl

+ ϖ · εhL↓l

εhl

.

Applying subadditivity and submultiplicativity of spectral
norms ωmax:

ωmax(J
skip
l

) ↗ (1↘ ϖ)ϑ + ϖϑ
2l↓L

. (11)

Given ϑ < 1 and 2l ↘ L ≃ 1 for l > L/2, we establish the
layer-wise bound:

ωmax(J
skip
l

) < ϑ = ωmax(J
vanilla
l

). (12)
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For the full model Jacobian J =
∏

L

l=1 Jl, the spectral norms
satisfy:

ωmax(J
skip) ↗

L↓1∏

l=0

[
(1↘ ϖ)ϑ + ϖϑ

2l↓L
]

<

L↓1∏

l=0

ϑ = ϑ
L = ωmax(J

vanilla). (13)

This spectral radius reduction attenuates perturbation growth
through ⇐ϱhL⇐ ↗ (ωmax(J))L⇐ϱh0⇐, stabilizes gradient
flow via ⇐⇒ωL⇐ ↗ ωmax(J)⇐⇒hLL⇐, and improves the
Lipschitz constant Lip(Mskip) < Lip(Mvanilla).

8.2. Theorem2

Under feature reuse with interval ς , Skip-DiT achieves
tighter perturbation bounds than Vanilla DiT, enabling
larger allowable reuse intervals while maintaining error
tolerance φmax

Proof. Let ht be the reused feature with error φt, ϱ the per-
turbation bound per step, x the input, and ↼ the model pa-
rameters. Through the differential mean-value theorem and
error propagation:

⇐f(x; ↼ +!↼)↘ f(x; ↼)⇐ ↗ sup
ω→

∥∥∥∥
εf

ε↼

∥∥∥∥ ⇐!↼⇐ ↭ ϱ (14)

φt+1 = ⇐ht+1 ↘ ht⇐ ↗ Lip(M)φt + ϱ (15)

From Theorem 1, the Lipschitz constants satisfy:

Lip(Mskip) = ωmax(J
skip) < ϑ

L = Lip(Mvanilla) (16)

The perturbation bounds inherit:

ϱskip = Cskip⇐!↼⇐ < Cvanilla⇐!↼⇐ = ϱvanilla (17)

where C· bounds the parameter-to-output Jacobian.
∥∥∥∥
εfskip

ε↼

∥∥∥∥ =

∥∥∥∥∥

L∏

l=1

εhl

ε↼

∥∥∥∥∥ ↗
L∏

l=1

∥∥∥∥
εhl

ε↼

∥∥∥∥

=
L∏

l=1

[
(1↘ ϖ)ϑ + ϖϑ

2l↓L
]
· Cbase

<

L∏

l=1

ϑ · Cbase = Cvanilla

For T -step feature reuse, cumulative error develops as:

φT ↗ Lip(M)T ↘ 1

Lip(M)↘ 1
ϱ (18)

Given ωmax(J skip) < ϑ
L and ϱskip < ϱvanilla, the maximal

interval ς satisfies:
ωmax(J skip)ε ↘ 1

ωmax(J skip)↘ 1
ϱskip =

ϑ
Lε ↘ 1

ϑL ↘ 1
ϱvanilla = φmax (19)

Solving equation 19 yields ςskip > ςvanilla under identical
φmax, proving Skip-DiT permits larger reuse intervals.

Table 9. Comparison of training efficiency between DiT-XL and
Skip-DiT . Images are generated with a 250-step DDPM solver.
The term cfg refers to classifier-free guidance scales, where metrics
for cfg=1.0 are computed without classifier-free guidance. The best
metrics are highlighted in bold. Skip-DiT significantly exceeds
DiT-XL/2 with much less training steps.

Model Steps FID ↑ sFID ↑ IS → Precision → Recall →

DiT-XL/2 7000k 9.49 7.17 122.49 0.67 0.68

Skip-DiT

400k 13.46 5.83 87.45 0.67 0.63
800k 10.13 5.87 108.28 0.68 0.65
1600k 9.07 6.26 119.38 0.68 0.67
2200k 8.59 6.41 124.74 0.68 0.67
2500k 8.41 6.30 125.16 0.68 0.67
2900k 8.37 6.50 127.63 0.68 0.68

9. Class-to-image Generation Experiments

Peebles and Xie [22] proposed the first diffusion model
based on the transformer architecture, and it outperforms all
prior diffusion models on the class conditional ImageNet [7]
512→512 and 256→256 benchmarks. We add skip connec-
tions to its largest model, DiT-XL, to get Skip-DiT. We
train Skip-DiT on class conditional ImageNet with res-
olution 256→256 from scratch with completely the same
experimental settings as DiT-XL, and far exceeds DiT-XL
with only around 38% of its training cost.

Training of Skip-DiT We add long-skip-connections in
DiT-XL and train Skip-DiT for 2.9M steps on 8 A100
GPUs, compared to 7M steps for DiT-XL, which also uses
8 A100 GPUs. The datasets and other training settings re-
main identical to those used for DiT-XL, and we utilize the
official training code of DiT-XL†. The performance com-
parison is presented in Table 9, which demonstrates that
Skip-DiT significantly outperforms DiT-XL while requir-
ing only 23% of its training steps (1.6M vs. 7M), highlight-
ing the training efficiency and effectiveness of Skip-DiT.

Accelerating Evaluation We evaluate Skip-DiT and
compare its performance against two other caching
methods: !-DiT and FORA. As shown in Table 10,
Skip-DiT achieves a 1.46→ speedup with only a mini-
mal FID loss of 0.02 when the classifier-free guidance scale
is set to 1.5, compared to the 7–8→ larger losses observed
with !-DiT and FORA. Moreover, even with a 1.9→ accel-
eration, Skip-DiT performs better than the other caching
methods. These findings further confirm the effectiveness of
Skip-DiT for class-to-image tasks.

10. Evaluation Details

VBench [10] is a novel evaluation framework for video
generation models. It breaks down video generation assess-

†https://github.com/facebookresearch/DiT
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Table 10. Class-to-image generation performance. The definition
of the cache step n follows that in Table 4. Images are gener-
ated with a 250-step DDPM solver. Speedups are calculated on
an H100 GPU with a sample batch size of 8. n = i indicates
caching the high-level features in xt for reuse during the inference
of xt→1, xt→2, . . . , xt→n+1. The term cfg refers to classifier-free
guidance scales, where metrics for cfg=1.0 are computed without
classifier-free guidance. We highlight baseline DiT models (without
caching) in grey and the best metrics in bold.

Methods FID ↑ sFID ↑ IS → Precision% Recall% Speedup

cfg=1.5

DiT-XL 2.30 4.71 276.26 82.68 57.65 1.00↔
FORA 2.45 5.44 265.94 81.21 58.36 1.57↔
Delta-DiT 2.47 5.61 265.33 81.05 58.83 1.45↔
Faster-Diff 4.96 10.19 223.21 75.21 59.28 1.42↔

Skip-DiT with Cached Inference

Skip-DiT 2.29 4.58 281.81 82.88 57.53 1.00↔
n = 2 2.31 4.76 277.51 82.52 58.06 1.46↔
n = 3 2.40 4.98 272.05 82.14 57.86 1.73↔
n = 4 2.54 5.31 267.34 81.60 58.31 1.93↔

cfg=1.0

DiT-XL 9.49 7.17 122.49 66.66 67.69 1.00↔
FORA 11.72 9.27 113.01 64.46 67.69 1.53↔
Delta-DiT 12.03 9.68 111.86 64.57 67.53 1.42↔
Faster-Diff 22.98 18.09 80.41 56.53 67.41 1.42↔

Skip-DiT with Cached Inference

Skip-DiT 8.37 6.50 127.63 68.06 67.89 1.00↔
n = 2 9.25 7.09 123.57 67.32 67.40 1.46↔
n = 3 10.18 7.72 119.60 66.53 67.84 1.71↔
n = 4 11.37 8.49 116.01 65.73 67.32 1.92↔

ment to 16 dimensions from video quality and condition
consistency: subject consistency, background consistency,
temporal flickering, motion smoothness, dynamic degree,
aesthetic quality, imaging quality, object class, multiple ob-
jects, human action, color, spatial relationship, scene, tem-
poral style, appearance style, overall consistency.

Peak Signal-to-Noise Ratio (PSNR) measures generated
visual content quality by comparing a processed version v
to the original reference vr by:

PSNR = 10→ log10(
R

2

MSE(v,vr)
) (20)

where R is the maximum possible pixel value, and MSE(·, ·)
calculates the Mean Squared Error between original and
processed images or videos. Higher PSNR indicates better
reconstruction quality. However, PSNR does not always
correlate with human perception and is sensitive to pixel-
level changes.

Structural Similarity Index Measure (SSIM) is a per-
ceptual metric that evaluates image quality by considering
luminance, contrast, and structure:

SSIM = [l(v,vr)]
ϑ · [c(v,vr)]

ϖ · [s(v,vrvr)]
ϱ (21)

where ϖ,↽, ϑ are weights for luminance, contrast, and struc-
ture quality, where luminance comparison is l(x, y) =
2µvµvr+C1

µ2
v+µ2

vr
+C1

, contrast comparison is c(x, y) = 2ςvςvr+C2

ς2
v+ς2

vr
+C2

,

and structure comparison is s(x, y) = ςxy+C3

ςvςvr+C3
, with C

denoting numerical stability coefficients. SSIM scores range
from -1 to 1, where 1 means identical visual content.

Learned Perceptual Image Patch Similarity (LPIPS) is
a deep learning-based metric that measures perceptual sim-
ilarity using L2-Norm of visual features v ↓ RH↔W↔C

extracted from pretrained CNN F(·). LPIPS captures se-
mantic similarities and is therefore more robust to small
geometric transformations than PSNR and SSIM.

LPIPS =
1

HW

∑

h,w

||F(vr)↘ F(v)||22 (22)

Fréchet Inception Distance (FID) and Fréchet Video Dis-

tance (FVD) FID measures the quality and diversity of
generated images by computing distance between feature
distributions of reference N (µr,”r) and generated images
N (µ,”) using inception architecture CNNs, where µ,” are
mean and covariance of features.

FID = ||µr ↘ µ||2 + Tr(”r + ”↘ 2(”r”)
1/2) (23)

FVD is a video extension of FID. Lower FID and FVD
indicate higher generation quality.

Table 11. Comparison of our caching method with the faster sam-
pler DDIM. Skip-Cache is evaluated with a 250-steps DDPM
and compared to the DDIM sampler under similar throughput.
Baseline DiT models (without caching) are highlighted in grey ,
and the best metrics are indicated in bold. Notably, DDIM outper-
forms the 250-step DDPM in the UCF101 task for both Latte and
Skip-DiT . Skip-Cache denotes Skip-DiT with cached
inference.

Method UCF101 FFS Sky Taichi

FVD ↑ FID ↑ FVD ↑ FID ↑ FVD ↑ FID ↑ FVD ↑ FID ↑

Latte 165.04 23.75 28.88 5.36 49.46 11.51 166.84 11.57
Skip-DiT 173.70 22.95 20.62 4.32 49.22 12.05 163.03 13.55

Skip-DiTn=2 165.60 22.73 23.55 4.49 51.13 12.66 167.54 13.89

DDIM+Skip-DiT 134.22 24.60 37.28 6.48 86.39 13.67 343.97 21.01
DDIM+Latte 146.78 23.06 39.10 6.47 78.38 13.73 321.97 21.86

Skip-DiTn=3 169.37 22.47 26.76 4.75 54.17 13.11 179.43 14.53

DDIM+Skip-DiT 139.52 24.71 39.20 6.49 90.62 13.80 328.47 21.33
DDIM+Latte 148.46 23.41 41.00 6.54 74.39 14.20 327.22 22.96

11. Scheduler Selection for text-to-video Tasks

For the text-to-video generation task, all the videos generated
for evaluation are sampled with 50 steps DDIM [33], which
is the default setting used in Latte. In the class-to-video
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generation tasks, vanilla Latte uses 250-step DDPM [8] as
the default solver for class-to-video tasks, which we adopt
for all tasks except UCF101. For UCF101, we employ 50-
step DDIM [33], as it outperforms 250-step DDPM on both
Latte and Skip-DiT. Table 11 highlights this phenomenon,
showing our methods consistently outperform DDPM-250
under comparable throughput, except for UCF101, where
DDIM performs better than 250 steps DDPM. In the text-to-
image task, we choose 50-step DDIM for sampling, and for
the class-to-image task, we choose 250-steps DDPM.

12. Implementation of Other Caching Methods

DeepCache DeepCache [17] is a training-free caching
method designed for U-Net-based diffusion models, leverag-
ing the inherent temporal redundancy in sequential denois-
ing steps. It utilizes the skip connections of the U-Net to
reuse high-level features while updating low-level features
efficiently. Skip-DiT shares significant similarities with
DeepCache but extends the method to DiT models. Specifi-
cally, we upgrade traditional DiT models to Skip-DiT and
cache them using Skip-DiT . In the work of DeepCache,
two key caching decisions are introduced: (1) N: the number
of steps for reusing cached high-level features. Cached fea-
tures are computed once and reused for the next N-1 steps.
(2) The layer at which caching is performed. For instance,
caching at the first layer ensures that only the first and last
layers of the U-Net are recomputed. In Skip-DiT, we
adopt these two caching strategies and additionally account
for the timesteps to cache, addressing the greater complexity
of DiT models compared to U-Net-based diffusion models.
For all tasks except the class-to-image task, caching is per-
formed at the first layer, whereas for the class-to-image task,
it is applied at the third layer.

!-DiT !-DiT [6] is a training-free caching method de-
signed for image-generating DiT models. Instead of caching
the feature maps directly, it uses the offsets of features as
cache objects to preserve input information. This approach
is based on the observation that the front blocks of DiT are
responsible for generating the image outlines, while the rear
blocks focus on finer details. A hyperparameter b is intro-
duced to denote the boundary between the outline and detail
generation stages. When t ↗ b, !-Cache is applied to the
rear blocks; when t > b, it is applied to the front blocks.
The number of cached blocks is represented by Nc. While
this caching method was initially designed for image genera-
tion tasks, we extend it to video generation tasks. In video
generation, we observe significant degradation in perfor-
mance when caching the rear blocks, so we restrict caching
to the front blocks during the outline generation stage. For
Hunyuan-DiT [14], we cache the middle blocks due to the
U-shaped transformer architecture. Detailed configurations
are provided in Table 12.

Table 12. Configuration details for !-Cache in different models
and tasks. t2v denotes text-to-video, c2v denotes class-to-video, t2i
denotes text-to-image, and c2i denotes class-to-image.

!-DiT Task Diffusion steps b All layers Nc

Latte t2v 50 12 28 21
Latte c2v 250 60 14 10
Hunyuan t2i 50 12 28 18
DiT-XL/2 c2i 250 60 28 21

PAB PAB (Pyramid Attention Broadcast) [53] is one of
the most promising caching methods designed for real-time
video generation. The method leverages the observation that
attention differences during the diffusion process follow a
U-shaped pattern, broadcasting attention outputs to subse-
quent steps in a pyramid-like manner. Different broadcast
ranges are set for three types of attention—spatial, temporal,
and cross-attention—based on their respective differences.
PABϑϖϱ denotes the broadcast ranges for spatial (ϖ), tem-
poral (↽), and cross (ϑ) attentions.

In this work, we use the official implementation of PAB
for text-to-video tasks on Latte and adapt the caching method
to other tasks in-house. For the class-to-video task, where
cross-attention is absent, PABϑϖ refers to the broadcast
ranges of spatial (ϖ) and temporal (↽) attentions. In the
text-to-image task, which lacks temporal attention, PABϑϖ

instead denotes the broadcast ranges of spatial (ϖ) and cross
(↽) attentions. We do not apply PAB to the class-to-image
task, as it involves only spatial attention.

Table 13. Configuration details for T-GATE in different settings.
t2v denotes text-to-video, t2i denotes text-to-image.

T-GATE Task Diffusion steps m k

Latte t2v 50 20 2
Hunyuan-DiT t2i 50 20 2

T-Gates T-Gates divide the diffusion process into two
phases: (1) the Semantics-Planning Phase and (2) the
Fidelity-Improving Phase. In the first phase, self-attention
is computed and reused every k step. In the second phase,
cross-attention is cached using a caching mechanism. The
hyperparameter m determines the boundary between these
two phases. For our implementation, we use the same hy-
perparameters as PAB [53]. Detailed configurations are
provided in Table 13.

FORA FORA (Fast-Forward Caching) [30] stores and
reuses intermediate outputs from attention and MLP lay-
ers across denoising steps. However, in the original FORA
paper, features are cached in advance before the diffusion
process. We do not adopt this approach, as it is a highly
time-consuming process. Instead, in this work, we skip
the “Initialization” step in FORA and calculate the features
dynamically during the diffusion process.
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2  Speedup

1.3  Speedup

"a breathtaking view of a beautiful sunrise over a mountain range. The sky is filled
with clouds, and the sun is shining brightly. It's a stunning sight to behold."

Original

PAB

Prompt "a room with a fireplace in the center. The room is dimly lit, and the fireplace is the
focal point of the room."

"a young boy wearing a plaid shirt and standing in a room. He is looking at the camera
with a smile on his face."

2  Speedup

1.3  Speedup

Original

PAB

Prompt "a man wearing a top hat and sunglasses playing a guitar in a city at night. He is
dressed in a suit and appears to be playing a song."

Figure 6. Qualitative results of text-to-video generation. We present Skip-DiT , PAB469, and the original model. The frames are randomly
sampled from the generated video.

AdaCache AdaCache [11] identifies the feature sample-
variance in the DiT, and proposes to predict the feature sim-
ilarity of the current timestep to decide whether to cache.
The codebook for Latte, which records the threshold is not
released. We provide a version of codebook which almost
reproduce the performance in the paper. The codebook is as
follows: {0.08 : 3, 0.10 : 2, 0.12 : 1}

TeaCache Same as AdaCache, TeaCache[16] also discov-
ers the feature instability in DiT. Different from AdaCache,
TeaCache finds the relationship between input and output
similarity and employ high-order polynomial functions to
predict the similarity of the current timestep. We use the
official codebase of it and choose the slow-caching strategy
to evaluate its upper-bound.

5



Original

2.19  Speedup

FFS Sky

2.43  Speedup

1.56  Speedup

Taichi UCF101

Figure 7. Qualitative results of class-to-video generation. We present the original video generation model and Skip-DiT with different
caching steps n. The frames are randomly sampled from the generated video.

1.46  Speedup

"A yellow vase
with two pink,
purple and
white flowers
in it."

"A skier going
downhill while
making snow
plumes."

"A dog
catching a
frisbee in the
air."

FORA
1.19  Speedup

T-GATE
1.12  SpeedupOriginal

-DiT
1.27  Speedup

Figure 8. Qualitative results of text-to-image generation. We present Skip-DiT , !-DiT, FORA, T-GATE, and the original model.

13. Case Study

Video Generation In Figure 6, we showcase the gener-
ated video frames from text prompts with Skip-DiT , PAB,
and comparing them to the original model. From generat-
ing portraits to scenery, Skip-DiT with caching consis-
tently demonstrates better visual fidelity along with faster
generation speeds. Figure 7 presents class-to-video genera-
tion examples with Skip-DiT with varying caching steps
↓ {2, 4, 6}. By comparing the output of Skip-DiT with
cache to standard output, we see Skip-DiTmaintains good
generation quality across different caching steps.

Image Generation Figure 8 compares qualitative results
of Skip-DiT compared to other caching-based accelera-
tion methods (!-DiT, FORA, T-GATE) on Hunyuan-DiT.
In Figure 9, Skip-DiT show distinct edges in higher
speedup and similarity to the original generation, while other
baselines exist with different degrees of change in details
such as color, texture, and posture. Similarly, we present
Skip-DiT with varying caching steps in Figure 9, showing
that with more steps cached, it still maintains high fidelity to
the original generation.
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Original   
1.46  Speedup

  
1.73  Speedup

  
1.93  Speedup

  
2.03  Speedup

Figure 9. Qualitative results of class-to-image generation. We present the original image generation model and Skip-DiT with different
caching steps n.
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