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Table 1. Comparison of computation overheads. We report cumu-
lative FPS for each stage on a single NVIDIA 3090 GPU.

Methods VOC21 (21) Object (81) ADE (150)

Baseline 20.0 16.7 4.8
+ Refine 10.0 3.6 2.1
+ Refine + RP 9.1 3.2 1.9
+ Refine + RP + AP 9.1 3.0 1.6

1. Computation overhead
To evaluate the computational cost of our method, we
present the cumulative FPS for each stage in Tab. 1. The
results show that the main computational overhead comes
from the refinement process, while the purification strategy
adds minimal cost. Furthermore, as the number of cate-
gories increases, the overall computation time also rises.
However, the gap between our method and the baseline
becomes smaller, demonstrating the efficiency of our ap-
proach at larger scales. Besides the network forward, we
acknowledge that using LLMs introduces some computa-
tional cost. In many practical scenarios for OVSS, the exact
set of classes is unknown in advance. However, this can
be effectively mitigated by precomputing descriptions us-
ing LLM for a very large vocabulary (e.g., ImageNet-21K)
offline.

2. Parameters Analysis
We analyze the effect of two thresholds Trp and Tap, de-
signed in RP and AP, respectively. As shown in Tab. 2 and
Tab. 3, for object-centric datasets like VOC21 and Object,
where the targets are relatively singular, the threshold Trp

can often be set to a higher value. However, for semanti-
cally complex classes in datasets like ADE and Stuff, a high
threshold Trp will filter out a large number of true classes,
leading to a decline in performance. Additionally, com-
pared to the VOC, ADE and COCO Stuff are more sensitive
to the threshold Tap, resulting in about 2% fluctuations.

3. LLM-Generated Description
The prompts used for generating descriptions are as follows:
• “How can you visually identify the {class} from its

similar objects? Please answer in one sentence using the
format: ‘The {class} has A, B, C,...’, where A, B, and
C are noun phrases.”

• “What does the {class} look like? Please answer in
one sentence using the format: ‘The {class} has A, B,

Table 2. Parameter Analysis on VOC21 and Object.

Trp Tap VOC21 (mIoU) Object (mIoU)

0.10 0.4 63.9 36.2
0.10 0.5 64.0 36.2
0.10 0.6 64.2 36.2
0.15 0.4 65.4 37.0
0.15 0.5 65.5 37.1
0.15 0.6 65.8 37.2
0.20 0.4 65.1 36.0
0.20 0.5 65.2 36.1
0.20 0.6 65.2 36.1

Table 3. Parameter Analysis on ADE and Stuff.

Trp Tap ADE (mIoU) Stuff (mIoU)

0.03 0.6 18.1 24.2
0.03 0.7 18.1 24.4
0.03 0.8 17.9 24.1
0.04 0.6 18.4 24.6
0.04 0.7 18.4 24.7
0.04 0.8 18.2 24.6
0.05 0.6 18.4 24.7
0.05 0.7 18.4 24.9
0.05 0.8 18.3 24.8
0.06 0.6 18.4 24.9
0.06 0.7 18.4 24.9
0.06 0.8 18.3 24.9
0.07 0.6 18.3 24.7
0.07 0.7 18.3 24.8
0.07 0.8 18.3 24.8
0.08 0.6 18.2 24.4
0.08 0.7 18.2 24.5
0.08 0.8 18.1 24.4
0.10 0.6 17.4 23.8
0.10 0.7 17.4 23.8
0.10 0.8 17.4 23.8

C,...’, where A, B, and C are noun phrases.”
• “What is the unique visual appearance of {class}?

Please answer in one sentence using the format:
{class} is A, B, C,..., where A, B and C are adjective
phrases to describe {class}.”

We show some generated samples in Tab. 4:
It can be seen that compared to a simple prompt tem-

plate, like ‘A photo of {class}’, the fine-grained descrip-
tions generated by large language models can offer more



Table 4. LLM generated description samples.

Class LLM generated description samples

Wall

A wall can be visually identified by its rectangular shape, typically made of materials like brick, wood, or
concrete, and often serving as a barrier or divider.
A wall has a structure of vertical and horizontal layers of building materials, such as bricks, blocks, or
concrete, often with a flat surface for attachment of wallpaper, plaster, or other finishing materials.

Plant

A plant can be visually identified by observing its distinct features such as its leaf shape, flower color,
stem texture, and overall growth habit.
A plant has leaves, stems, and roots, which are typically green and surrounded by soil or a growing
medium.

Skyscraper

A skyscraper has a tall, rectangular structure with setbacks, and typically features a steel frame, curtain
walls, and a spire or antenna.
A skyscraper is a tall, impressive building that reaches into the sky and has multiple stories, glass windows,
and a distinctive architecture that varies depending on its location and time period.

bench

A bench has a rectangular seat and backrest, usually supported by four legs, often made of wood or metal,
and may have armrests or a storage compartment underneath.
A bench is typically a long, narrow piece of furniture with a flat, horizontal surface and a backrest, often
made of wood or metal, and may have armrests or a canopy.

Image Ground Truth FreeCP Image Ground Truth FreeCP

Figure 1. Qualitative results. From top to down are Pascal VOC, Pascal Context, COCO object, Cityscapes and ADE dataset, respectively.



comprehensive and meticulous descriptions of the charac-
teristics of the categories.

4. Results
We also provide visualizations of the segmentation results,
as shown in Fig. 1. Our method achieves relatively accurate
boundaries and predictions. However, some smaller classes
are occasionally missed, highlighting areas for further im-
provement.

5. PyTorch-like Code
We show the pytorch-like code of FreeCP in Algorithm 1.

Algorithm 1 PyTorch-Like Code for FreeCP

def forward(img, text_ori, text_llm, t_rp, t_ap):
# extract activation maps
ft_ori, ft_llm = clip_text_encoder(text_ori,
text_llm)
fv_class, fv_patch, affinity =
clip_visual_encoder(img)
activ_map = Similarity(ft_ori, fv_patch)
activ_map_ref = matmul(activ_map, affinity)

# RP
for m in classes:

sc_intra = cal_iou(activ_map[m],
activ_map_ref[m])

removal_classes = where(sc_intra < t_rp)
activ_map_ref[removal_classes] = 0

# AP
sc_inter = cal_iou(activ_map_ref)
graph = [1 if sc_inter > t_ap else 0]
ambigous_group = dfs(graph)
for n in ambigous_group:

img_crop = find_conflict_area(img,
ref_activ_map[n].mean())

fv_class_crop, _, _ = clip_visual_encoder
(img_crop, text_llm[n])

final_class = Argmax(Similarity(ft_llm[n
], fv_class_crop))

activ_map_ref[!final_class] = 0

return activ_map_ref.argmax()
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