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A. Implementation Details
In Sec. 4 of the main paper, we described the design of
each component in our framework. These components
are sequentially integrated according to the overall pipeline
shown in Fig. 2 of the main paper. Below, we provide ad-
ditional implementation details for each component of our
framework.

Camera Search. In the camera search workflow, we set
the number of initially sampled large-scale camera poses
P0 to 2000. The yaw and pitch angles are sampled using
an equal-area distribution around the sphere. The radius
is sampled with steps following a square root distribution
within the range [1.0, 5.0], and lookatx,y,z are uniformly
sampled within the range [-1.0, 1.0] for all three axes. We
select the top n = 7 camera poses, along with the reference
video frame, to input to DUSt3R. The scoring function be-
tween the rendering view and the reference view is a com-
bination of the DreamSim loss [1] and the foreground mask
area loss, with respective weights of 1 and 0.1.

In the utilization of the dense stereo reconstruction
model, we obtain the ground truth point clouds of M̃t

during the rasterization process using Nvdiffrast [3]. To
speed up optimization and filter out possible outliers in the
point clouds, we retain only 5% points of both the ground
truth point clouds PCrend,{1,...,n} and the predicted ones
PCrend,{1,...,n}. We then align these two sets of point clouds
using Chamfer loss to optimize the global transformation
(rotation, scale, and translation) over 2000 iterations. To
prevent the alignment from becoming trapped in local min-
ima, such as an object being flipped along its vertical axis,
we manually flip the point clouds along the axis starting at
the 1000th iteration. We then compare the Chamfer loss be-
fore and after flipping to select the best alignment. After
aligning the point cloud sets, we optimize the camera pose
for 500 iterations using MSE loss between the 3D point
clouds of PCref and the 2D pixel positions in Vref,t.

We select the top K = 199 camera poses from P0, along
with the camera pose from DUSt3R, for the PSO algorithm.

We set the number of iterations for PSO to 25. For the sub-
sequent gradient descent optimization, we set the iterations
to 300 and use only the MSE loss between the foreground
mask area of the rendering view and the reference video
frame.

Mesh Appearance Refinement. We enable optimization
of the negative condition embedding in TRELLIS. At each
inference step of the generative model (conditioned on this
embedding), we decode the output into a mesh. By comput-
ing the visual alignment between the rendering view of the
reconstructed mesh and Gaussian Splats, we backpropagate
the gradient through differentiable rendering to the negative
condition embedding in TRELLIS. We use a combination
of DreamSim, LPIPS, and MSE losses (each with a weight
of 1), along with an MSE regularization term weighted at
0.2 to compare with the embedding’s initial value, prevent-
ing distortion of the reconstructed result. This optimiza-
tion is applied only during the latter part of the flow model
(0.6 ≥ t ≥ 0, where t represents the timestep of the flow
model). We begin the optimization at iteration 5 and gradu-
ally increase by 1 every 5 timesteps of the flow model.

Topology Consistency. For global alignment, we use
Chamfer loss and L1 loss between the rendering views of
the two meshes, with equal weighting for both losses. The
optimization is performed over 500 iterations, using 20 ran-
domly selected views around the mesh for the rendering
loss.

For local alignment, we set the iterations to 1000 and
use 50 views for the rendering view L1 loss. In addition
to Chamfer loss, we incorporate ARAP loss, Face Area
Consistency loss (which penalizes face area changes dur-
ing mesh deformation), and Edge Length Consistency loss
(which penalizes edge length changes). Due to the small
values of Face Area Consistency loss and Edge Length Con-
sistency loss, we assign them weights of 1e6 and 1e2, re-
spectively. All other losses are assigned a weight of 1.
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Total Mesh Gen
Camera Pose Search

DUSt3R PSO SGD

57.7s 1.5s 13.9s 11.1s 0.5s

Mesh Refine Mesh Regist Texture Map Optim Mesh Interp 4D Asset Convert

14.1s 15.6s 0.3s 0.6s 0.1s

Table 1. Detailed average runtime per frame for each component
of our framework.

Texture Consistency. For the first mesh, we select 100
random views around it, and for the subsequent meshes, we
use only their rendering views under Cref. The global texture
map is optimized based on all these rendering views over
2500 iterations, using both L1 loss and total variation loss
to ensure natural smoothness.

Mesh Interpolation. We set the frame interpolation to 5
for the complex data collected online due to their high FPS,
and to 3 for the Consistent4D data, which has a relatively
low FPS.

Metric Calculation Settings. For accurate visual similar-
ity evaluation, we use the “ViT-bigG-14” model provided
by OpenCLIP [2], trained on the LAION-2B [6] dataset,
to calculate the CLIP score. For FVD calculation, we use
StyleGAN-V [7]. For the LPIPS metric calculation, we
use the VGG model. Since the FVD metric requires in-
put videos to have the same number of frames, for recon-
struction results on our additionally collected long anima-
tion videos, we split the rendering video into subsequences
of 32-frame videos and calculate FVD on all of them. For
the final subsequence that has fewer than 32 frames, we ex-
clude it from the calculation.

All experiments in this paper were conducted on a single
A100 GPU. Table 1 provides detailed runtime information
for each framework component as a supplement to Table 3
in the main paper.

B. Ablation Studies
B.1. Quantitative Ablation Studies
Ablation Study on Different Base 3D Generation Mod-
els. In Table 2, we replace our base 3D generator,
TRELLIS, with several contemporary models, including
Hunyuan3D-2.0 [9], TripoSG [5], and CraftsMan3D [4].
The results demonstrate that using more advanced 3D gen-
erators (such as Hunyuan3D-2.0 and TripoSG) leads to cor-
responding improvements in performance, illustrating the
extensibility of our method alongside ongoing advance-
ments in 3D generation techniques.

Ablation of Components and Framework Complexity
Analysis. Table 3 presents an ablation study of the key
components in our framework, confirming the effectiveness

Dataset Method CLIP↑ LPIPS↓ FVD↓ DreamSim↓

Simple

Naı̈ve TRELLIS 0.8905 0.1597 1342.66 0.1282

Naı̈ve CraftsMan3D 0.9177 0.1702 1185.47 0.0924

Naı̈ve TripoSG 0.9259 0.1534 973.16 0.0657

Naı̈ve Hunyuan3D 2.0 0.9185 0.1471 851.01 0.0647
V2M4 (TRELLIS) 0.9259 0.1017 825.59 0.0688

V2M4 (CraftsMan3D) 0.9212 0.1051 960.63 0.0772

V2M4 (TripoSG) 0.9286 0.0971 758.25 0.0652

V2M4 (Hunyuan3D 2.0) 0.9286 0.0885 691.48 0.0634

Complex

Naı̈ve TRELLIS 0.8887 0.1265 1216.19 0.1492

Naı̈ve CraftsMan3D 0.9060 0.1350 1162.00 0.1027

Naı̈ve TripoSG 0.9201 0.1404 1023.88 0.0891
Naı̈ve Hunyuan3D 2.0 0.9097 0.1185 1022.81 0.0962

V2M4 (TRELLIS) 0.9008 0.0747 666.04 0.1220

V2M4 (CraftsMan3D) 0.9268 0.0709 558.34 0.1046

V2M4 (TripoSG) 0.9359 0.0608 433.38 0.0873
V2M4 (Hunyuan3D 2.0) 0.9192 0.0605 415.53 0.0990

All

Naı̈ve TRELLIS 0.8891 0.1352 1014.45 0.1438

Naı̈ve CraftsMan3D 0.9098 0.1446 970.24 0.0999

Naı̈ve TripoSG 0.9222 0.1436 859.04 0.0833
Naı̈ve Hunyuan3D 2.0 0.9144 0.1284 796.98 0.0853

V2M4 (TRELLIS) 0.9073 0.0817 576.73 0.1082

V2M4 (CraftsMan3D) 0.9270 0.0795 524.00 0.0977

V2M4 (TripoSG) 0.9359 0.0698 401.71 0.0818
V2M4 (Hunyuan3D 2.0) 0.9224 0.0674 377.14 0.0901

Table 2. Impact of different base 3D generators on the overall
performance.

Base Model Strategy CLIP↑ LPIPS↓ FVD↓ DreamSim↓

TRELLIS

Final 0.9259 0.1017 825.59 0.0688

w/o PSO 0.8855 0.1158 1090.86 0.1184

w/o DUSt3R 0.9236 0.1046 756.29 0.0713

w/o SGD 0.9146 0.1269 1086.14 0.0861

w/o Mesh Refinement 0.9028 0.1103 1023.60 0.1032

Replace DUSt3R with VGGT 0.9230 0.1006 821.22 0.0631

CraftsMan3D Replace DUSt3R with VGGT 0.9207 0.1046 887.53 0.0753

TripoSG Replace DUSt3R with VGGT 0.9250 0.0960 730.13 0.0757

Hunyuan3D-2.0 Replace DUSt3R with VGGT 0.9279 0.0879 727.24 0.0636

Table 3. Ablation study about the impact of key components in
our framework.

Parameter Value CLIP↑ LPIPS↓ FVD↓ DreamSim↓

DreamSim
(Camera Search)

0.1 0.9176 0.1058 824.20 0.0784
1 0.9259 0.1017 825.59 0.0688

10 0.9234 0.1037 853.18 0.0726

DreamSim
(Mesh Refinement)

0.1 0.9129 0.1054 876.41 0.0911
1 0.9259 0.1017 825.59 0.0688

10 0.9226 0.1078 932.72 0.0750

ARAP
0.1 0.9200 0.1046 814.31 0.0727
1 0.9259 0.1017 825.59 0.0688

10 0.9258 0.1058 928.54 0.0744

Table 4. Impact of varying DreamSim and ARAP loss weights.



Figure 1. Topological Consistency Between Meshes. M̃′
t represents the registered meshes derived from M̃′

1, while M̃refine,t denotes the
original reconstructed meshes. The number of vertices and faces is displayed for clearer comparison.

Noise CLIP↑ LPIPS↓ FVD↓ DreamSim↓
Original 0.9259 0.1017 825.59 0.0688

0.1× 0.9289 0.1022 942.99 0.0686
1× 0.9259 0.1077 947.57 0.0771

10× 0.8016 0.1694 2410.03 0.2577

Table 5. Noise impact.

of each procedure. We also evaluate the impact of replac-
ing the default dense stereo reconstruction model DUSt3R
with the more advanced VGGT [8], demonstrating addi-
tional performance improvements.

Regarding theoretical complexity, our framework ex-
hibits linear time complexity O(T ) with respect to the num-
ber of frames T , while maintaining almost constant memory
usage O(1).

Quantitative Parameter Tuning for DreamSim and
ARAP. As outlined in Appendix A, during the optimiza-
tion process, we assign only a loss weight factor for Dream-
Sim and ARAP losses, which are set to 1 by default. Table 4
illustrates the performance impact of varying these parame-
ters.

Figure 2. Performance of the Camera Search Design. We
present intermediate results from each phase of our camera search
workflow. The order of the intermediate results is highlighted with
red index numbers.

Robustness to Base Mesh Quality. As discussed in the
limitations section of the main paper, the quality of the base
mesh significantly impacts the results. Table 2 shows that
higher-quality meshes produced by advanced 3D generators
(e.g., Hunyuan3D-2.0 and TripoSG) yield improved robust-



Figure 3. Performance of the Mesh Appearance Refinement.
We present the mesh appearance before and after applying our
mesh appearance refinement technique. Specific parts are enlarged
for better comparison. Please zoom in for a clearer view.

ness. Additionally, Table 5 provides a detailed analysis of
robustness by evaluating the effects of injecting varying lev-
els of Gaussian noise during mesh generation.

B.2. Qualitative Ablation Studies
Topology Consistency. In Fig. 1, we present both the reg-
istered meshes and the original mesh throughout the anima-
tion. The original mesh successfully reconstructs to match
subsequent timestamp meshes, demonstrating the effective-
ness of our design in Sec. 4.3.

Camera Search. In Fig. 2, we display the rendering
views under the identified camera poses at different phases
of the camera search workflow described in Sec. 4.1.
Specifically, we show the top-1 camera view after exten-
sive camera pose sampling, the camera view obtained from
DUSt3R estimation, the camera view after the Particle
Swarm Optimization (PSO) search, and the final camera
view following gradient descent refinement (See details in
Algorithm 1 of the main paper). The results demonstrate
that our camera search method is both effective and robust,
successfully finding the camera pose that aligns with the ref-
erence video frame. This alignment subsequently supports
accurate mesh reposing.

Mesh Appearance Refinement. In Fig. 3, we present the
mesh before and after applying our refinement strategy de-
scribed in Sec. 4.2. It is evident that the refined mesh ex-
hibits improved texture and is much more aligned with the
appearance shown in the reference video frame.

C. Failure Cases
In Fig. 4, we display instances where our method encoun-
ters failures, including effects from poor initial 3D mesh

Figure 4. Failure Cases of Our Method. We present the limi-
tations of our method in scenarios involving topological changes
and poor 3D mesh initialization.

results from TRELLIS and artifacts arising from topology
changes during the animation.

D. More Qualitative Results
We display more qualitative results in Fig. 5 and Fig. 6.
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