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A. Common conditions for proving the sparsity property of interactions
Ren et al. [5] have proven that, under three common conditions, a well-trained DNN typically encodes a small set of salient
interactions, denoted as Ωsalient, for inference, where |Ωsalient| � 2n.
(1) The DNN is assumed not to encode interactions of very high orders, i.e., high-order derivatives of the DNN output with
respect to input variables are assumed to be zero.
(2) The classification confidence of the DNN on partially masked input samples is assumed to increase monotonically as the
number of unmasked input variables increases, i.e., ∀i ∈ N\S and ∀S ⊆ N\i, v(xS∪{i}) > v(xS).
(3) The network output for masked input samples is assumed to be neither excessively high nor excessively low.

B. Proof of Theorem 2
Theorem 2. The change of the inference score ∆v(m1,m2) is proven to be represented as the sum of interaction effects of
different orders.

∆v(m1,m2) =
∑n

m=0
w(m) · ES⊆N,|S|=m[I(S|x)],

w(m) =


Cm

m2n − Cm
m1n, m ≤ m1n,

Cm
m2n, m1n < m ≤ m2n,

0, m2n < m ≤ n,

(1)

Proof. The difference in inference scores between different randomly masked samples is represented as:

∆v(m1,m2) = E T1,T2⊆N&T1(T2

|T2|=m2n,|T1|=m1n

[v(xT2
)− v(xT1

)]

= E T2⊆N,
|T2|=m2n

[v(xT2
)]− E T1⊆N,

|T1|=m1n

[v(xT1
)],

(2)

where subsets T1 and T2 are randomly sampled from the universal set N , 0 ≤ m1 ≤ m2 < 1.
Then, according to the Theorem 1, the first term in Eq.(2) can be re-written as:

E[v(T1)] = ET1
[
∑

S⊆T1

I(S|x)]

= ET1 [
∑m1n

m=0

∑
S⊆T1,|S|=m

I(S|x)]

=
∑m1n

m=0
ET1

[Cm
m1nES⊆T1,|S|=m[I(S|x)]]

=
∑m1n

m=0
Cm

m1nET1
[ES⊆T1,|S|=m[I(S|x)]],

(3)

Similarly, we can obtain,
E[v(T2)] =

∑m2n

m=0
Cm

m2nET2
[ES⊆T2,|S|=m[I(S|x)]], (4)
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Note that ES⊆T1,|S|=m[I(S|x)] is averaged over subsets T1 and ES⊆T2,|S|=m[I(S|x)] is averaged over subsets T2. Then, we
can obtain,

ET1
[ES⊆T1,|S|=m[I(S|x)]] = ET2

[ES⊆T2,|S|=m[I(S|x)]] = ES⊆N,|S|=m[I(S|x)], (5)

Then, we substitute Eq. (3) and Eq. (4) into Eq. (1), and the output change ∆v(m1,m2) can be rewritten as follows:

∆v(m1,m2) = ET1,T2:∅⊆T1⊂T2⊆N [v(T2)− v(T1)]

= E T2⊆N,
|T2|=m2n

[v(xT2)]− E T1⊆N,
|T1|=m1n

[v(xT1)]

=
∑m2n

m=0
Cm

m2nET2 [ES⊆T2,|S|=m[I(S|x)]]−
∑m1n

m=0
Cm

m1nET1 [ES⊆T1,|S|=m[I(S|x)]]

=
∑m2n

m=0
Cm

m2nES⊆N,|S|=m[I(S|x)]−
∑m1n

m=0
Cm

m1nES⊆N,|S|=m[I(S|x)]

=
∑n

m=0
w(m)ES⊆N,|S|=m[I(S|x)],

w(m) =


Cm

m2n − Cm
m1n, m ≤ m1n,

Cm
m2n, m1n < m ≤ m2n,

0, m2n < m ≤ n.

(6)

Then, Theorem 2 is proven.

C. OOD Detection performance of baseline models and enhancement models

Table 1. OOD detection performance of baseline model and the model trained with different training-time OOD detection enhancement
methods.

Dataset Method ResNet-18 ResNet-34 WideResNet-40-2

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CIAFR-10

Baseline 62.03 88.48 50.09 89.12 56.99 89.02
LogitNorm [9] 41.70 92.63 37.53 91.74 46.55 90.72

CSI [7] 31.78 94.96 19.24 96.56 24.27 95.66
T2FNorm [3] 37.54 93.15 27.87 94.57 23.76 95.54

DAL [8] 12.31 96.94 12.50 96.70 12.93 96.05

CIAFR-100

Baseline 79.70 78.15 78.95 78.30 78.01 76.90
LogitsNorm 75.61 81.86 66.82 82.30 79.10 79.61

CSI 59.37 85.93 54.36 86.11 73.45 83.44
T2FNorm 77.54 82.55 72.71 81.38 71.36 82.49

DAL 54.48 87.82 55.14 87.15 50.54 87.87

Table 1 reports the OOD detection performance of baseline models and the models trained with training-time OOD detec-
tion enhancement methods, which shows enhancement models achieve superior OOD detection performance to the baseline
model.

D. Experiment Details
D.1. Annotating Semantic Parts
We follow [2, 4, 6, 10] to annotate semantic parts, because given an input sample x ∈ Rn, the DNN theoretically encodes 2n

interactions. Thus, the computational costs to compute interactions are very high, when n is sufficiently large. To address this
issue, [2, 4, 6, 10] annotated 12 semantic parts in each input sample, such that the annotated semantic parts were aligned over
different samples. In this way, [2, 4, 6, 10] treated each semantic part of each input sample as a “single” input variable for
the DNN. In experiments, given an image in the CIFAR-10 dataset or CIFAR-100 dataset, we first resized it to 32×32 before
feeding it into the DNN. Then, we follow [2, 4, 6, 10] to divide the resized image into small patches of size 4× 4, resulting
in a total of 8 × 8 image patches. We randomly selected n = 12 patches from 6 × 6 image patches located in the center of
the image to reduce computational costs, because [2, 4, 6, 10] considered the DNN mainly used foreground information to
make inference.



Nevertheless, we conducted experiments to examine whether the distribution of interactions of different orders was stable,
when we sampled different sets of input variables to compute interactions. If the stability of the distribution of the interaction
order was successfully examined, it means that we could follow [2, 4, 6, 10] to compute interactions on a small set of
input variables to reduce the time cost, instead of computing interactions on all input variables. Specifically, we extracted
interactions from the ResNet-18 model, and we followed the settings in [2, 4] to divide each image in the CIFAR-10 dataset
into 8 × 8 image patches. Then, we randomly sampled two different sets of n = 12 patches as two sets of input variables,
denoted by N1, and N2. For the set N1, we calculated the mean interaction strength ES⊆N1,|S|=m[|I(S|x)|] of each order
m. We computed the Jaccard similarity between two distributions of interactions computed based on N1 and N2.

Jaccard Similarity =

∑
m min(ES⊆N1,|S|=m[|I(S|x)|],ES⊆N2,|S|=m[|I(S|x)|])∑
m max(ES⊆N1,|S|=m[|I(S|x)|],ES⊆N2,|S|=m[|I(S|x)|])

(7)

Besides, we also whether the distribution of interactions of different orders was stable under different settings of image
patch sizes. To this end, we divided each image in the CIFAR-10 dataset into 4 × 4 image patches and sampled n = 12 as
input variables, denoted by N3. Then, we calculated the mean interaction strength ES⊆N3,|S|=m[|I(S|x)|] of each order m.
We computed the Jaccard similarity between two distributions of interactions computed based on N1 and N3.

Jaccard Similarity =

∑
m min(ES⊆N1,|S|=m[|I(S|x)|],ES⊆N3,|S|=m[|I(S|x)|])∑
m max(ES⊆N1,|S|=m[|I(S|x)|],ES⊆N3,|S|=m[|I(S|x)|])

(8)

Fig. 1 and Fig. 2 show that under different settings of patch sizes and sampled sets N , the distribution of interactions over
different orders was similar. Thus, the above experiments verified that we could follow [2, 4, 6] to simply sample a small set
of input variables to reduce the computational cost of interactions, which did not affect the analysis of OOD detection.
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Figure 1. Comparison between the averaged interaction strength calculated over different N .
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Figure 2. Comparison between the averaged interaction strength calculated with different patch sizes.



D.2. Training Details
We follow [1] to fine-tune ResNet-18, ResNet-34 and WideResNet-40-2 on the CIFAR-10 and CIFAR-100 datasets. For each
DNN, we trained five versions, including a baseline model trained with the cross-entropy loss, and four enhancements trained
with training-time OOD methods, respectively. We set the training hyper-parameters of the baseline models and enhancement
models to be consistent to ensure fair comparisons. Each DNN was trained for 100 epochs using SGD with the momentum
0.9, weight decay 5e−4, and learning rate 0.01.
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