Constraint-Aware Feature Learning for Parametric Point Cloud

Supplementary Material

A. Overview

This supplementary material provides additional details
that supplement the main paper and includes more experi-
mental results.

In Sec. B, we present the details of network architecture
and data preparation in validation experiments. In Sec. C,
we provide the data construction and static of Param20K
dataset. In Sec. D offers data process for visualization and
more results of constraint acquisition and classification ex-
periments. In Sec. E, we show more details of our constraint
representation and constraint learning methods.

B. Validation Experiment

B.1. Constraint Representation

This section introduces the constraint representation in
the validation experiments.

The constraint representation in validation experiments
is defined in a simple manner: for a point, its constraint
representation is defined by the relationship between the
plane it attached and the reference plane, as shown in Fig. 1.
This calculation process is carried out by openCASCADE
Technology (OCCT). The constraint representation is rep-
resented in a one-hot encoding, where (1, 0, 0) indicates
perpendicular, (0, 1, 0) indicates parallel, and (0, 0, 1) in-
dicates other constraints. Each point in the point cloud is
expressed as (,y, z, constraint). For example, if the co-
ordinate of a pointis (0.1, 0.2, 0.3), and the plane it attached
is perpendicular to the reference plane, it is expressed as
(0.1,0.2,0.3,1,0,0), where (0.1,0.2,0.3) represents the
point’s coordinate, and (1, 0, 0) denotes the type of con-

straint.
%
)
\ lene

Figure 1. Constraint representation in validation experiments.
The red point’s constraint representation is the constraint type be-
tween the magenta plane and the reference plane, using one-hot
encoding.

B.2. Dataset Generation

This section introduces the dataset generation proce-
dures in the validation experiments.

The dataset generation for the validation experiments
consists of the following steps:

1. Building the parametric templates for cuboids and
prisms (with angles of 50°, 60°, 70°, 80°, 82°, 85°, 87°,
89°). Afterwards determining the dimensional parame-
ter range for each parameter. The parametric templates
and the dimensional parameters are shown in Fig. 2.

2. Assigning random values to the parameters in paramet-
ric templates. Each parametric template is instantiated
into 5,000 BRep format CAD shapes, which are stored
in STEP files [8].

3. Using OCCT to read the STEP files and convert them
into meshes. Poisson disk sampling is then applied to
sample points from meshes.

4. For the sampled points, OCCT is used to calculate the
plane to which each point is attached. The constraint
type for each point is then determined based on the re-
lationship between the attached plane and the reference
plane.

5. Rotating the generated point clouds randomly along the
XYZ axes, within a range of [—25°, 25°].

6. Assigning the generated point clouds to each experi-
ments. The validation experiments involve binary classi-
fication of cuboids and prisms with specific angles. The
point clouds used in each of the eight experiments are as
follows (80 % for training, and 20 % for testing):

* Experiment 1: Cuboid x 5000, Prism 50° x 5000
e Experiment 2: Cuboid x 5000, Prism 60° x 5000
e Experiment 3: Cuboid x 5000, Prism 70° x 5000
» Experiment 4: Cuboid x 5000, Prism 80° x 5000
* Experiment 5: Cuboid x 5000, Prism 82° x 5000
* Experiment 6: Cuboid x 5000, Prism 85° x 5000
e Experiment 7: Cuboid x 5000, Prism 87° x 5000
¢ Experiment 8: Cuboid x 5000, Prism 89° x 5000

(a) Prism

Figure 2.

Parametric templates for prisms and cuboids.
a,b,c € [0.3,2.3], for prisms: b > —¢

tana”

B.3. Model Design

This section introduces the structure of the constraint-
aware model used in the validation experiments.

The constraint-aware model first employs a PointNet++
[10] backbone to predict point-wise constraint representa-
tions. These constraint representations are then concate-
nated with the point coordinates and passed through an-
other PointNet++ backbone to determine the point cloud
category. The model’s loss function is the sum of the classi-
fication loss and the constraint representation loss, as shown
in Fig. 3

point-wise constraint

pointnet++ —> .
constraint loss

classification
loss

poi

Figure 3. Constraint-aware model structure.

C. Param20K Dataset

C.1. Why build up the Param20K dataset?

The limited availability of BRep datasets poses barriers
to deep learning on CAD shapes. Most existing CAD shape
datasets consist of mesh files, such as MCB [3] and ESB
[2]. While mesh files could approximate the appearance of
CAD shapes, lack crucial boundary information. In con-
trast, BRep data [5, 16] serves as the native representation
of CAD shapes and is therefore more suitable for dataset
construction. However, labeled BRep datasets remain rela-
tively scarce, for example, FabWave [1] includes only 2,133
BRep files. Although the ABC [4] contains a large number
of BRep files, it remains unlabeled.

C.2. Dataset Construction

This section provide details of purification process and
data acquisition of Param20K dataset.

Purification: The purification process involved remov-
ing broken, duplicated, or overly complex CAD shapes re-
quiring more than 4,000 points for point cloud representa-
tion.

Point cloud: The point cloud data in Param20K dataset
containing about 2,200 points, point constraints is also in-
cluded, each point is expressed as (Coordinate, Primitive
Type, Main Axis Direction, Adjacency), the meshes and
point clouds are generated from BRep data.

C.3. Dataset Statics

This section presents the shapes count and proportion
statistics for each category in the Param20K dataset. Ad-
ditionally, shapes from each category are showcased.

Param20K dataset is divided into 80 % for training and
20 % for testing.

The class distribution is shown in Fig. 4.

The proportion of shapes in each category are shown in
Fig. 5.

Shapes instantiated from the parametric templates de-
signed by our team names begin with "Num”.

Example shapes from each category are shown in Fig. 6.

D. Constraint Acquisition and Classification
Experiments

D.1. Process to Visualize Main Axis Direction

The main axis direction of a point, denoted as v =

(z,y,2), is visualized as R = 21, G = ¥“f1 and

2 > 2 >
B = ZT“ Since the main axis direction is represented
as a unit vector, —1 < z,y,z < 1, which results in

z+1 +1 1
0< & v 2 L1

D.2. Constraint Visualization of CstBRep

More constraints extracted by the CstBRep module from
BRep data are visualized in Fig. 7.

D.3. Constraint acquisition on MCB

We evaluated the pre-trained CstPnt module and
ParSeNet [11], HPNet [15] on the CAD shape dataset MCB
[3] to predict constraints. For the MCB consists of mesh
files, it was not possible to extract Ground Truth con-
straints for comparison, therefore no ground truth presented
in Fig. 8, and no numerical results are available. Based on
the results visualized in Fig. 8, CstPnt demonstrated a high
level of constraint prediction accuracy even on an unseen
dataset.

D.4. Classification on MCB

We conducted evaluations on the CAD shape dataset
MCB [3], with results presented in Tab. 1, from which our
CstNet achieved the highest scores across all metrics, con-
clusions similar with experiments on Param20K dataset.

E. Constraint Learning Method Details

E.1. Defects of General Constraint Representation

The simple constraint representation in validation exper-
iments is insufficient for a comprehensive definition, as se-
lecting an appropriate reference plane for complex CAD
shapes is challenging. Moreover, traditional constraint rep-
resentations suffer from non-uniqueness, as shown in Fig. 9,
defining the relations between three planes involves multi-
ple constraint options, therefore, this approach is not well-
suited for deep learning models.

The constraint is defined as a graph representation in
some circumstances, where each node represents a primi-
tive, and the edge between nodes represent their constraints.

3000

2500

2000

1500

1000

500

Figure 4. Quantity distribution of Param20K dataset.

L & ¥

N

%

ot

Figure 5. Shapes proportion of Param20K dataset.

However, this approach is not well-suited for point cloud
analysis. First, in cases where only point clouds are pro-
vided as input, the number of primitives is hard to obtain.
Second, due to the unordered nature of point cloud, it is
difficult to associate points with the corresponding primi-
tives, making label design very challenging. Additionally,
the graph representation essentially records the constraint
relationships between each pair of primitives, for the CAD
shapes contain many primitives, recording the relative po-
sitions between every pair of primitives would result in an
overwhelming data volume, making the representation of
these relative positions impractical.

Table 1. Classification results on MCB. Acc: accuracy over in-
stance %, Acc*: accuracy over class %, F1: Fl-score, mAP: mean
average precision %.

Method Acc Acc* F1 mAP
PointCNN [6] 93.89 81.85 83.86 90.13
PointNet [9] 86.78 67.70 86.55 74.08

PointNet++ [10] 87.45 73.68 88.32 91.33
SpiderCNN [14] 9359 79.70 8130 86.64
PointConv [13] 9325 80.24 7131 82.19

DGCNN [12] 92.54 7447 7612 7427
3DGCN [7] 93.71 78771 8459 84.35
Ours 96.87 89.21 89.85 93.17

E.2. Unique Process of MAD

This section provides the process of Main Axis Direction
and example constraint representation.

The main axis direction is processed to ensure its unique-
ness, as one axis can determine two unit vectors with oppo-
site direction. For a given axis, we first randomly select one
of the two vectors, denoted as v(z, y, z), and then process it
using the Algorithm 1. Examples shown in Fig. 10.

A point with constraint representation is expressed as
Fig. 11.

E.3. CstBRep Module

This section explains why it is necessary to compute
valid edges in the CstBRep module.

The CstBRep module is used to compute constraints
from BRep data, and the computation process consists of
the following steps:

Step 1: Point cloud generation (optional).

Step 2: Calculation of valid edges and the distance from
each point to these valid edges. If the minimum distance

V0BG S

belt_wheel retaining_ring flange NumlO0 Numll

A A LNV ANES

bearing screw rivet gear washer spring

Numl2 Numl3 Numl4 Numl5 Numl7 Numl8 Numl9 Num2 Num20 Num22 Num25 Num27 Num29 Num3 Num31

WLOXANECTeCOON R
VO‘\O\QQQ% CSY9%@

Num9 Numl6 Num21 Num24 Num26 Num30 Num32 Num34 Num39 Num40 Num42 Num43 Num45 Num50
prism85 valve chain_wheel Nunx spacer

Figure 6. Example shapes for each category in Param20K dataset.

Model

Adj

PT

Figure 7. More constraint extraction results from the BRep
data. MAD: Main Axis Direction, Adj: Adjacency, PT: Primitive

Type.

is below a threshold, the point is classified as an edge-near
point.

Step 3: Calculation of the primitives to which each point
attached, followed by analysis to determine point’s Primi-
tive Type and the Main Axis Direction.

In Step 2, valid edges are computed, as this helps to
reduce the potential for data to mislead the deep learning
model. The definition of valid edges is illustrated in Fig. 12.
This definition is based on the observation that a complete
cylinder in the BRep data stored in STEP files is often split
into two half-cylinder faces. As a result, two generatrices
form edges on the cylindrical surface, but the deep learning
model cannot predict these edges, as shown in Fig. 13. Fur-
thermore, in other cases, edges corresponding to smoothly

Algorithm 1: Unique Process of MAD

Data: Unit vector v(z,y, z)
Result: Unit vector after direction unification
1 if 2 < 0 then

2 v=—1Xuv;

3 Return v;

4 else if z == 0 then

5 if y < 0 then

6 v=—1Xxuwv;

7 Return v;

8 else if y == 0 then
9 if z < 0 then

10 v=—1Xuv;
11 L Return v;

12 return v

connected faces are also difficult to identify, leading to con-
fusion for deep learning models.

E.4. CstPnt Module

This section provides a detailed explanation of the valid
points in the computational steps that inspire the design of
the CstPnt Module.

The CstPnt Module is used to predict constraint repre-
sentation from point clouds. The design of the CstPnt Mod-
ule is inspired by the following calculation process:

For a point p in point cloud, its constraint representation
could be calculated by the following steps:

1. Identify neighbor points around p.

MAD

Adj PT

Model Ours ParSeNet [11] HPNet [15] Ours

ParSeNet [11] HPNet [15] Ours ParSeNet [11] HPNet [15]

O VONQ el

¢

Figure 9. Non-uniqueness of traditional constraint representa-
tion. Left: Double vertical constraints, right: Vertical and parallel
constraints.

2. From all neighbor points, identify those that belong to
the same primitive as p; these points are referred to as
valid points.

3. Fit shapes such as cylinders or planes using valid points,
and determine the primitive type with the smallest fitting
erTor.

4. Based on the valid points and the primitive type, calcu-
late the main axis direction and assess whether the point
is near an edge.

In these steps, it is necessary to compute the valid points.
We define the valid point as the neighbors that lie on the
same primitive as the center point p, as visualized in Fig. 14.

Cases needing reverse MAD

Case 1: Z<0

Case 2: Z=0
and Y<0

“The MAD determined by the primitive is not unique.
" 5uch a the MAD of the above plane could be ny and n;
Therefore, it may mislead the deep learning model.

Case 3: =0
and Y=0
and X<0

Figure 10. Unique Process of MAD.

N J VAN J
Y v v D e

Coordinate

Primitive Type Main Axis Adjacency

Figure 11. Point with constraint representation.

These valid points can be used to determine whether the
center point is near an edge, as well as to calculate the main
axis direction and primitive type of the attached primitive,

(a) Invalid edges.’ (a) Valid edges:

Figure 12. Zebra stripes of primitives corresponding to invalid
and valid edges. Left: G1 or higher continuous at the invalid
edges, right: GO continuous at the valid edges.

Figure 13. Cylinder in BRep representation. A complete cylin-
drical surface is represented as a combination of two half-cylinder
surface, resulting in edges along the generatrices that cannot be
recognized, thereby causing confusion for deep learning model.

while the invalid points do not contribute to these calcula-
tions.

point cloud
@ center point
e valid neighbor point
e invalid neighbor point

Figure 14. Valid and invalid points for constraint representa-
tion calculation.

E.5. SurfaceKNN

This section introduces the algorithm of SurfaceKNN.

SurfaceKNN based on the assumption that when KNN
is applied with a small number of neighbors, the output
points are searched along the shape’s surface. This assump-
tion has been validated in most cases. Leveraging this as-
sumption, SurfaceKNN is accomplished by applying KNN
with small number of neighbors iteratively. During each
iteration, KNN is used to search a small set of neighbor-
ing points, which then serve as new central points for sub-
sequent searches. This process continues until the desired
number of points is obtained, as illustrated in Fig. 15.

determine the following items:
number of neighbors: K
number of neighbors each step: stepK

search stepK points around the center
point by KNN

l treat the neighbors obtained in the
previous step as the center points,
A and search stepK points around each
center point by KNN

¢83%
SXt repeat the above steps until the
number of points exceeds K,
and the nearest K points are the
l neighbors obtained by SurfaceKNN

© exists
@ centers .;‘_g;%}:%:ﬁé(_'f
neighbors :
Figure 15. Algorithm of SurfaceKNN.
References

[1] A. Angrish, B. Craver, and B. Starly. Fabsearch: A 3d cad
model-based search engine for sourcing manufacturing ser-
vices. Journal of Computing and Information Science in En-
gineering, 19(4), 2019. 2

[2] S.Jayanti, Y. Kalyanaraman, N. Iyer, and K. Ramani. Devel-
oping an engineering shape benchmark for cad models. CAD
Computer Aided Design, 38(9):939-953, 2006. 2

[3] Sangpil Kim, Hyung-gun Chi, Xiao Hu, Qixing Huang, and
Karthik Ramani. A large-scale annotated mechanical com-
ponents benchmark for classification and retrieval tasks with
deep neural networks. In European conference on computer
vision, pages 175-191. Springer, 2020. 2

[4] S. Koch, A. Matveev, Z. Jiang, F. Williams, A. Artemov, E.
Burnaev, M. Alexa, D. Zorin, and D. Panozzo. Abc: A big
cad model dataset for geometric deep learning. In Proceed-
ings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 9593-9603, 2019. 2

[5] J. G. Lambourne, K. D. D. Willis, P. K. Jayaraman, A.
Sanghi, P. Meltzer, and H. Shayani. Brepnet: A topological
message passing system for solid models. In Proceedings of
the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 12768-12777,2021. 2

[6] Y.Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen. Pointcnn:
Convolution on x-transformed points. In Advances in Neural
Information Processing Systems, pages 820-830, 2018. 3

[7]1 Z. H. Lin, S. Y. Huang, and Y. C. F. Wang. Learning of 3d
graph convolution networks for point cloud analysis. /EEE
Transactions on Pattern Analysis and Machine Intelligence,
44(8):4212-4224,2022. 3

[8] Janusz Pobozniak. Algorithm for iso 14649 (step-nc) fea-
ture recognition. Management and Production Engineering
Review, 4(4):50-58, 2013. 1

[9] C.R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep

[10]

[11]

[12]

[13]

[14]

[15]

[16]

learning on point sets for 3d classification and segmentation.
In Proceedings - 30th IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, pages 77-85, 2017. 3
C.R.Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hi-
erarchical feature learning on point sets in a metric space. In
Advances in Neural Information Processing Systems, pages
5100-5109, 2017. 2, 3

Gopal Sharma, Difan Liu, Subhransu Maji, Evangelos
Kalogerakis, Siddhartha Chaudhuri, and Radomir Mé&ch.
ParSeNet: A Parametric Surface Fitting Network for 3D
Point Clouds, page 261-276. Springer International Publish-
ing, 2020. 2

Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and
J. M. Solomon. Dynamic graph cnn for learning on point
clouds. ACM Transactions on Graphics, 38(5), 2019. 3

W. Wu, Z. Qi, and L. Fuxin. Pointconv: Deep convolutional
networks on 3d point clouds. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, pages 9613-9622, 2019. 3

Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao. Spidercnn: Deep
learning on point sets with parameterized convolutional fil-
ters. In Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), pages 90-105, 2018. 3

Siming Yan, Zhenpei Yang, Chongyang Ma, Haibin Huang,
Etienne Vouga, and Qixing Huang. Hpnet: Deep prim-
itive segmentation using hybrid representations. In 2021
IEEE/CVF International Conference on Computer Vision
(ICCV), page 2733-2742. IEEE, 2021. 2

Long Zeng, Yong-Jin Liu, Sang Hun Lee, and Matthew
Ming-Fai Yuen. Q-complex: Efficient non-manifold bound-
ary representation with inclusion topology. Computer-Aided
Design, 44(11):1115-1126, 2012. 2

	Overview
	Validation Experiment
	Constraint Representation
	Dataset Generation
	Model Design

	Param20K Dataset
	Why build up the Param20K dataset?
	Dataset Construction
	Dataset Statics

	Constraint Acquisition and Classification Experiments
	Process to Visualize Main Axis Direction
	Constraint Visualization of CstBRep
	Constraint acquisition on MCB
	Classification on MCB

	Constraint Learning Method Details
	Defects of General Constraint Representation
	Unique Process of MAD
	CstBRep Module
	CstPnt Module
	SurfaceKNN

