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Figure 3. Initial value creation for Laplace equation. We map
the boundary value from the template to the leaf according to the
curve length along the contour.

A. Catmull-Rom Curve
Given a shape template with the skeleton and deformation,
we generate a smooth geometry with Catmull-Rom curve.
A general Catmull-Rom curve is composed of K + 2 con-
trol points {p}K+2

i=0 and K + 1 segments. The first and the
last control point p0, pK+1 are virtual control points, which
depend on other control points, i.e. p0 = p1 − (p2 − p1),
pK+1 = pK + (pK − pK−1), as shown in the blue dots in
Fig. 2.

Each segment p(t) in time t ∈ [0, 1] is a cubic poly-
nomial curve and defined by the consecutive four control
points: pi−2, pi−1, pi, and pi+1, and a shape parameter
α. We set α = 0.5 for all segments in this paper. Each
segment satisfies p(0) = pi−1 and p(1) = pi. Assum-
ing p(t) = [pi−2,pi−1,pi,pi+1]C, the blending weights
C(t) are given by:

C(t) =


−αt+ 2αt2 − αt3

1 + (α− 3)t2 + (2− α)t3

αt+ (3− 2α)t2 + (α− 2)t3

−αt2 + αt3

 . (1)

B. Detailed explaination of reconstruction
pipeline

Fig. 1 depicts our single- or multi-image inference pipeline.

3D Geometry We first acquire a point cloud—either by
estimating camera intrinsics and depth with Perspective-
Field and DepthAnything on a single view and lifting to
a partial cloud, or by running SfM+GSplats on multi-view
images to obtain a full cloud.

Parameter Meaning
i the index of node
j the index of control points within a node
M the Demeter Model
F the faces set of Demeter mesh
V the vertices of Demeter mesh
vf the vertices of the templates after shape offset

and deformation, vf ∈ V
Φ the parameter of Demeter model (PCA coeffi-

cient)
Γ topology

pa(i) the parent of the node i
ans(j) the parent of the control point j (within node i)
θ articulation
θi the articulation of node i
τi rotation of node i
di length with respect to the parent stem of node i
si scale of node i
T rigid + scale transformations
T accumulated rigid + scale transformations along

the kinematic chain
β shape
βi the shape parameter of node i
vt the vertices of the templates without deforma-

tion (canonical space)
S shape operation to template vertices
Φs PCA of Shape
γ deformation
dj length with respect to parent of control point j
τj rotation of control point j
vj vertex j in node i with shape offset
D deformation operation to template vertices
Φd PCA of Deformation

tp(i) the type of the node i
n total number of nodes
nl the number of leaf node
ns the number of stem node
no the number of other node except leaf and stem
ml1 the number of vertical control points of a leaf
ml2 the number of horizontal control points of a leaf
ms the number of control points of a stem
Ω UV space
Ω′ leaf space
φ the mapping between UV space and leaf
∂ the boundary of domain
b the mapping between the boundary of UV space

and leaf
P the input point cloud
N the number of input points

Table 1. Explanation of Demeter model notation.

Segmentation We then perform instance segmenta-
tion—using MaskRCNN on the single view and unproject-
ing masks to 3D, or using PointTransformer-v3 (PT-v3) on
the multi-view cloud to predict per-point categories and
inverse-distance scores, removing high-score points and
clustering with DBSCAN.
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Figure 1. Test-time Reconstruction Pipeline. The pipeline transforms the input images to a segmented point cloud, extracts the topology
and fits part templates, and finally outputs the parametric mesh.

Figure 2. Visualization of Catmull-Rom Curve. The alpha pa-
rameter controls the curvature of the curve. We choose α = 0.5
in this paper. The red dots represent the control points and the
blue ones represent the virtual control points, which is necessary
to draw the first and last segment.

Tree-structure recovery We construct a dense directed
graph G over the estimated instances. The edge weights
Wij enforce the constraint that leaves have no children:
Wij = 0 if i = j; Wij = ∞ if cluster i is leaf; other-
wise Wij = rij , where rij is the min distance of any points
from cluster i to j. Then, we compute the minimum span-
ning tree (MST) over G starting from the root stem, which
yields the plant skeleton with the minimum connection cost.

Demeter Fitting Finally, given the estimated topology,
seg, and point cloud, we fit each cluster with a leaf or
stem template, then run a global optimization over all
parts parameters by minimizing Chamfer distance between
the parametric shape and input cloud, producing the final
Demeter parametric mesh.

C. Additional Model Details
Topology Not every arbitrary tree structure corresponds
to a valid plant. Most plants exhibit strong morphological
constraints. For example, each plant may have a maximum
depth or width and exhibit some first-order constraints, in-
cluding the following: leaves cannot possess child nodes,
and for soybeans, top-canopy stems often have a triplet of
leaves as children. We enforce the former constraint by
pruning edges with leaves as parents before constructing the
minimal spanning tree. Incorporation of further constraints
is left for future work.

Articulation Each node, except the root, is connected to
its parent stem. The articulation of each node determines
the rigid transformation relative to the local coordinate sys-
tem at the connection point, as shown in Fig. 9. Given an
arbitrary stem, the coordinate system depends only on the
stem shape and the position of the connection point, and is
independent of the global 6 DoF pose of the stem.

Given ms control points {v}ms
j=1 on the stem, we calcu-

late the relative rotation {Rj}ms−1
j=1 of control points from

each segment vj+1−vj , where j = 1, 2, ...,ms−1, and the
y-axis of R0 is aligned with the first segment. The points
in each segment will have the same local coordinate as their
preceding control point.

Shape We solve Eq. 6 in the main paper to get the bi-
jective mapping between the leaf and template. To get
the initial boundary value, we assign the leaf bottom p0
to q0 = (0.5, 0), and the leaf tip p1 to q1 = (0.5, 1.0).
For other points along the contour, we uniformly map the
boundary value according to the curve length of the point,
as shown in Fig. 3.

D. Additional Results and Visualizations
Overfitting over different species To further show the
generalization ability, we report the overfitting result on



Figure 4. Render Demeter in Blender. We could attach textures (Fig. 5) to the leaf of our Demeter model and dump to rendering engine
such as blender for photo-realistic rendering. From left to right, the image shows pepper, soybean and maize respectively.

Figure 5. The texture extracted from leaf images using bijective mapping. Similarly, we could map the leaf to a square UV space and
get the texture, which can be easily applied to the grid points of our parametric leaf.

Ribes Rose Pepper Tobacco Soybean Maize Smooth Learnable Disentangle
NKSR 0.084 0.095 0.087 0.081 0.174 0.332 ✓
Bezier 0.134 0.066 0.082 0.252 0.159 0.978 ✓
Ours 0.121 0.041 0.054 0.095 0.154 0.649 ✓ ✓ ✓

Table 2. Leaf fitting error for different species. We show normalized CD(× 100). We highlight the best and second best values.

different species using our model, NKSR and Bézier sur-
faces (most common NURBS shape) and report results in

Tab. 2. We didn’t compare with CropCraft[6] since it only
works for Soybean. Our model yields superior reconstruc-
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Figure 6. Qualitative results of reconstructing maize. We show the results of fitting Demeter-Maize models to point clouds from the
Pheno4D dataset (sample 1,2 and 3) and web dataset [7] (sample 4 and sample 5). Different colors represent different instances. The results
show that our model can generalize to species beyond soybeans and capture shape details.
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Figure 7. PCA coefficient of soybean leaf. We visualize the first
several principle component of leaf for soybean in (−3σ, 3σ).

tion plus two key benefits: (1) a PCA-based, learnable
shape prior; and (2) disentangled, interpretable parame-

ters—unlike Bézier curves, whose control points lack phys-
ical meaning and are not even on-surface, our on-leaf and
on-vein control points and PCA basis correspond to bio-
physical/phenotypical traits.

3D Reconstruction Given the ground-truth instance seg-
mentation, we calculate the minimal distance from each
point to other instances, as shown in Fig. 10.

For training, we follow the default configuration in
PointTransformer-V3 but without the mixing strategy. We
set the batch size as 7 and use AdamW optimizer with a
learning rate 0.0025, weight decay 0.02, and trained in 300
epochs. The loss function is composed of the cross-entropy
loss and distance regression loss, i.e. ltotal = lce + 15ldist.

The predicted graph differs from the ground truth due
to both errors in prediction and the inherent ambiguity in
stem connectivity labeling. Additionally, our model cannot
automatically fill in missing stems if the input point cloud
has too many missing parts, as shown in Fig. 13.
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Figure 8. PCA coefficients of Demeter-Maize leaf shape. We
vary the PCA coefficients for maize leaf shape across (−3σ, 3σ)
with respect to the mean shape for all 3 components. The red and
blue points represent the control points for the 2D contour and the
orange curve represents the initial skeleton for 3D deformation.

Figure 9. Local coordinate system on the stem. Each point on
the curve is defined in a local coordinate system determined by the
curve’s intrinsic geometry at that specific point.

2D Reconstruction We train Mask-RCNN with a
ResNet50-FPN backbone starting from the COCO-
pretrained model in detectron2 [4] for 20K iterations. We
use the default configuration but with a batch size of 4 and
lowering the learning rate at 8K and 12K iterations. For
inference, we use a confidence threshold of 0.8.

We apply an off-the-shelf depth estimator [5] to lift all
the instances to 3D. However, the lifted partial 3D point
clouds are usually noisy. Therefore we remove instances if
the total number of points is less than 30 for stems and 100
for leaves, and remove leaves based on the proportions of

Input pcd Dist. Inv Dist.

Figure 10. Truncated Inverse Distance. Given a input point
cloud with instance segmentation, we select the point in every in-
stance and calculate the distance to all other instances for that point
(Middle). Afterwards, we select a threshold and calculate the in-
verse distance and train PointTransformer to predict this value.

their rotated bounding boxes. We also filter out the points
with a high gradient of depth. We infer the topology from
the partial point cloud by building a minimal spanning tree,
and removing the ”bare stems” (stems without any children)
to reduce noise. Afterwards, we fit the Demeter model pa-
rameters in the same way as before. During fitting, we ap-
ply the linear model to constrain the shape parameter β into
(−2σ, 2σ) and adapt the L1 chamfer distance for robust-
ness to outliers. As a result, our model achieves a 2D IoU
of 0.9028 between the mask of predicted mesh and the mask
of ground-truth mesh.

Our model may produce noisy outputs in novel views
because we only apply constraints at the node level, not at
the global topology level. We also did not constrain the
leaf deformation or stem deformation. We leave these as
directions for future improvements.

Remark Both the multi-view and single-image recon-
struction we proposed here is a preliminary exploration of
3D reconstruction using Demeter. Despite showing great
potential, we believe there is significant potential for the
community to develop better reconstruction algorithms in
the future using our parametric model.

E. Detail about Maize Species

We show that the Demeter methodology generalizes to other
plant species by developing a Demeter-Maize prototype us-
ing the Pheno4D [3] dataset, which consists of 84 maize
point clouds capturing different growth stages of 6 maize
plants. We also reconstruct maize from a web dataset [7],
which contains larger maize plants compared to Pheno4D.
To acquire the 2D shape parameterization, we simply ap-
pend an additional scaling axis to the soybean leaf shape
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Figure 11. Qualitative result of point-based reconstruction. Given the unlabeled 3D point cloud as input, our model could faithfully
recover the mesh, semantics, instances and topology.

parameters (Fig. 8), since there is no existing maize leaf
scan dataset. Afterward, we apply the same pipeline as for
soybeans to learn the 3D deformation basis and fit other pa-
rameters. The result (Fig. 6) shows that Demeter can faith-
fully capture maize plant shape.

F. Other Application

Agriculture We showcase this capability by generating
small crop fields by placing fitted Demeter models in a grid,
and passing them to Helios [1] to simulate the response of
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Figure 12. Qualitative result of point-based reconstruction. Given the unlabeled 3D point cloud as input, our model could faithfully
recover the mesh, semantics, instances and topology.

the plant to weather variations over the course of a day. The
weather variables were taken from data measured by a flux
tower [2] and include temperature, humidity, radiation, and
other environmental variables. In Fig. 14 and Fig. 15, we
visualize two outputs of the simulation: photosynthesis rate

and stomatal conductance, which are both directly related
to crop productivity.
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Figure 13. Qualitative result of image-based reconstruction. The depth prediction comes from off-the-shelf DepthAnything [5]

Rendering By extracting texture from the bijective map-
ping mentioned in Eq. 6 in the main paper, we could add
texture to the parametric model and using ray-tracing to ob-
tain realistic rendering.

G. Discussion

The importance of disentanglement In agriculture, dis-
entangled and interpretable shape parameters are vital for
phenotyping & genotyping, biophysical simulation, and
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Figure 14. Photosynthesis simulation results. We perform sim-
ulations using Helios [1] on two soybean canopies generated by
repeating Demeter-Soybean models. Left: timeseries of the net
photosynthesis rate for the crop canopy over the course of a day,
in units of µmolCO2/m2/s. Other columns: mesh visualization
where each leaf face is colored according to the rate of photosyn-
thesis over that face (brighter = higher rate).
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Figure 15. Stomatal conductance simulation results. Stomatal
conductance is a measure of the degree of opening of a plant’s
stomata, which determines the rate of gas exchange (including
carbon dioxide and water) between the plant and the air. Left:
timeseries of the net gas exchange per unit ground area, in units of
mol/m2/s. Other columns: per-face rate-colored visualization.

process-models, as they serve as controllable, measurable
variables in crop scientists’ workflows. In graphics, disen-
tangled shapes allows controllable procedural generation,
texture mapping, and physically driven deformations.

Sensitivity to dataset size The learnable parameters are
PCA components for leaf and stem shape and deforma-
tion. Training these PCA requires only a handful of diverse
plants per species—each plant contributes multiple leaves
and stems—so long as the total # of leaves/stems exceeds
the # of PCA control points per template. We can also
adapt an initial template from related species (e.g., soy-
bean to cowpea or tobacco) and finetune on even smaller
datasets when annotated 3D scans are scarce. For example,
our soybean model uses custom scans and FGLIR leaf data;
Papaya is trained on PLANesT3D; tobacco adapts the soy-
bean template and retrains on Plant3D, producing a viable

model from just 3–5 full 3D samples (with small fidelity
trade-offs).

And training an instance-segmentation network from
scratch typically requires more data (e.g., 50 plants), but
fine-tuning a pretrained model on just a few examples gen-
eralizes well to new species.

Limitation Although our model achieves realistic model-
ing, there are still some limitations. For example, the Deme-
ter does not model skinning, so each part has uniform thick-
ness and the connections between parts are unnatural.

Additionally, we have only demonstrated very basic ca-
pabilities for sample generation, such as copying the sub-
tree from existing soybeans and pasting to random position
and changing its topology. We believe that learning the dis-
tribution of the plant graph in latent space can better handle
this task in the future.
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