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Appendix

A. Overview
In this appendix, we provide additional details and explanations as follows:
• We present a comprehensive comparison of the computational efficiency of Video VAEs across two resolutions (2562

and 5122). We report FLOPs, inference time, and memory consumption for each, further validating LeanVAE’s superior
efficiency. Results are summarized in Tab. 4.

• We visualize the transformation of videos into the frequency domain using the Haar Discrete Wavelet Transform (DWT)
and the subsequent reconstruction via the Inverse Discrete Wavelet Transform (IDWT) in Fig. 6.

• A straightforward comparison between AutoEncoding (AE) and Compressed Sensing (CS) signal recovery algorithms is
presented in Appendix D.

• We introduce the tiling inference technique utilized in Video VAEs in Appendix E, along with its influence on VidTok’s
reconstruction results in Tab. 5. Furthermore, we elaborate on the caching strategy adopted by LeanVAE that supports
lossless temporal tiling inference.

• The architectural details of three LeanVAE variants are plotted in Fig. 9.

B. Comprehensive Efficiency Comparison

CV-VAE Open-Sora OD-VAE VidTok CogVideoX WF-VAE Cosmos LeanVAE

TFLOPs 11.4 / 45.8 9.9 / 40.2 14.4 / 57.9 10.4 / 41.6 15.5 / 61.9 6.9 / 27.8 0.6 / 2.4 0.2 / 0.8
Time (s/it) 0.76 / 3.25 0.80 / 3.09 0.91 / 3.84 1.37 / 5.51 1.29 / 5.05 0.52 / 2.69 0.08-0.13 / 0.37 0.04-0.17 / 0.20

Mem. (GiB) 13.1 / 26.8 2.5 / 4.0 13.4 / 37.4 12.8 / 34.6 9.6 / 34.6 4.2 / 13.3 2.0 / 3.0 2.0 / 2.9

Table 4. Efficiency comparison across all models on 2562 / 5122 resolution with 17 frames. An anomalously slower first-round evaluation
was observed only for Cosmos and LeanVAE at 256px. We thus report a range, with the upper bound reflecting the warm-up round and the
lower representing subsequent stable rounds.

It is well known that architecture design is challenging, especially given the high training cost of Video VAEs. We break
two dominant constraints in existing design paradigms: (1) the dependence on SD VAE-style spatial priors, and (2) the
reliance on global attention computation. Our work shows that neither constraint is essential for video reconstruction: the
former introduces significant parameter and computation redundancy, the latter adds computation overhead. By discarding
both, LeanVAE achieves notable gains in efficiency, as shown in Tab. 4. While Cosmos also shows notable efficiency, its
reconstruction lags far behind peer baselines, likely suggesting our idea is more effective than its simplification strategy.

C. Visualization of Haar Wavelet Transform
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Figure 6. Visualization of the 3D Haar wavelet transform.



D. Comparison between AE and CS Signal Recovery Algorithms
AutoEncoding (AE) and Compressed Sensing (CS) are two classical paradigms for data compression and reconstruction. In
AE algorithms, data is compressed through an encoder network and subsequently restored by a decoder network. CS methods
perform downsampling by multiplying data with a sensing matrix, the signal is then reconstructed by a recovery algorithm.
A comparison of these two frameworks is illustrated in Fig. 7.
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Figure 7. Comparison of AE and CS frameworks.

E. Tiling Inference
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Figure 8. Two approaches to mitigating discontinuities in temporal tiling inference. Only temporal changes are shown here. (a) Overlapped
group processing, (b) Caching mechanism in convolution modules. The illustration shows chunksize=5, overlap count=1, and cache
count=2.

Tiling inference is a widely adopted technique to enable inference on long video sequences or high-resolution frames
when constrained by memory limitations. The core idea of tiling inference is to partition the video into smaller chunks, along
the temporal [1, 8, 22, 30] or spatial dimension [42, 47], with inferenced results subsequently concatenated. However, tiling
inference inevitably introduces discontinuities at chunk boundaries due to the lack of contextual information from adjacent
chunks during convolution. This discontinuity can lead to visible artifacts or temporal inconsistency in the reconstructed
video.

In this work, we focus on temporal tiling inference, which can mitigate such discontinuities using the properties of causal
CNNs. Two common methods are employed to address this issue: (1) Overlapped Groups: As shown in Fig. 8(a), frames
are grouped with some overlap between adjacent chunks. (2) Caching Strategy: In convolution, previous inference results
are cached as padding for the next chunk, as illustrated in Fig. 8(b). The effectiveness of these approaches depends critically
on the chunksize and overlap/cache counts, which influence both the computational efficiency and reconstruction results.

In our multi-resolution experiments ( Sec. 5.2), as VidTok does not offer caching support, we employ overlapped group
methods. At 7682 resolution, the maximum feasible chunksize for VidTok is 5 and we set overlap counts to 1. Despite using
the overlapped groups method, we observe that VidTok’s reconstruction is still impacted by tiling inference, as shown in
Tab. 5. With smaller chunksize , VidTok’s memory usage decreases, but the number of inference steps increases accordingly.

Recent work [22] introduced a model-aware caching strategy for lossless temporal tiling inference. For the LeanVAE
model, which consists only of causal depthwise convolutions with a kernel size of 3x3x3 and stride 1x1x1, the lossless
caching strategy is straightforward: the last two tokens in previous chunk need to be cached in each convolution structure



(the first chunk still uses zero padding). The detailed computation process can be found in [22]. This approach maintains con-
sistent reconstruction quality across varying chunksizes ( Tab. 5). Furthermore, as LeanVAE’s memory usage does not vary
significantly between 5-frame and 17-frame video inference, the caching operation actually increases memory consumption
than full inference.

Discussion on Caching Precomputed Latents. An alternative to tiling inference is to precompute and cache all video
latents before diffusion model training. This eliminates the repeated use of the VAE encoder during training. However, such
caching brings several drawbacks [27]: it incurs substantial storage overhead, disables on-the-fly data augmentation, and
limits the flexibility of frame sampling strategies for training samples. Hence, an efficient encoder like LeanVAE remains
indispensable for scalable and flexible diffusion training.

Model PSNR ↑ SSIM ↑ LPIPS ↓ rFVD ↓ Mem.(GB)

VidTok (chunksize=5) 26.53 0.7708 0.1086 342.44 6.5
VidTok (chunksize=9) 26.48 0.7692 0.1101 351.44 8.9
VidTok (Full) 26.50 0.7707 0.1098 358.28 13.8

LeanVAE (chunksize=5) 26.04 0.7629 0.0899 322.56 2.1
LeanVAE (chunksize=9) 26.04 0.7629 0.0900 322.58 2.3
LeanVAE (Full) 26.04 0.7629 0.0899 322.46 2.3

Table 5. Performance with temporal tiling inference. Evaluation is conducted on 17-frame 256×256 DAVIS videos. ”Full” denotes
inference without tiling.

F. Architectural Variants
We explored three architectural variants of LeanVAE.The detailed network architectures are illustrated in Fig. 9.
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Figure 9. Architectural overview of LeanVAE variants (Patching and Encoder). The Unpatching and Decoder adopt symmetric structures.

• Variant 1: Jointly processes low-frequency and high-frequency components.
• Variant 2: Separately processes low-frequency and high-frequency components, followed by merging them.
• Variant 3: Directly processes the input without wavelet decomposition.
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