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6. Overview
This supplementary material provides implementation de-
tails for keyframe management, patch-based scale align-
ment, pointmap replacement, and Gaussian map optimiza-
tion modules. We also include additional experiments on
KITTI, with runtime, memory, and patch size analysis.
Furthermore, we present extra qualitative results on three
datasets, including tracking trajectory and novel view syn-
thesis. Finally, we discuss limitations and future work.

7. Implementation Details
7.1. Keyframe Management
As described in Section 3.3.3, we joinly refine camera poses
and the Gaussian map within a local keyframe window
W . A well-designed keyframe selection strategy must en-
sure sufficient viewpoint coverage while avoiding redun-
dancy. Given the computational cost of jointly optimizing
the Gaussian scene and camera pose across all keyframes,
we maintain a local keyframe window W to select nonre-
dundant keyframes that observe overlapping areas of the
scene. This approach provides better multi-view constraints
for subsequent Gaussian map optimization. With this in
mind, we adopt the keyframe management approach from
[22], where keyframes are selected based on covisibility,
and the local window is managed by assessing the overlap
with the latest keyframe.

Specifically, we define the covisibility and overlap be-
tween keyframes i and j using Intersection over Union
(IOU) and Overlap Coefficient (OC) [22]:
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where Gv

i
is the set of visible Gaussians in keyframe i.

Given the latest keyframe j, keyframe i is added to the
keyframe window W if: IOUcov(i, j) < kI or the relative
pose translation distance dij > kdD̂i, where D̂i represents
the median pointmap depth of frame i. Given the newly
added keyframe i

→, we remove keyframe l from the win-
dow if: OCcov(i→, l) < ko. If the number of keyframes in
the window W exceeds the maximum size, we remove the
keyframe with the lowest OC value relative to i

→.
For all experiments on three datasets, we set the

keyframe management parameters as kI = 0.9, kd =

0.08, ko = 0.3, with the keyframe window size set to
|W| = 8.

7.2. Patch-based Scale Alignment
As described in Section Section 3.3.1, we align the scale of
the pretrained pointmap X

p to Gaussian scene, using the
3DGS pointmap X

r as reference. We propose a rigorous
and detailed patch-based method to select highly reliable
“correct points” and use them to calculate the scale factor.
The detailed procedure is described in the following Algo-
rithm 1:

Algorithm 1 Patch-based Pointmap Scale Alignment
1: procedure ALIGN(Xr

, X
p
, P, ωµ, ωω, εr,max iter)

2: ϑ
→ ↓ 1

3: X
p

1 ↓ X
p

4: for iter = 1 to max iter do
5: Segment Xr and X

p

iter
into P ↔ P patches

6: for each patch in X
r
, X

p

iter
do

7: µr,ϑr ↓ mean(Xr), std(Xr)
8: µp,ϑp ↓ mean(Xp

iter
), std(Xp
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)

9: if |µr ↗ µp| < ωµ · µp ↘ |ϑr ↗ ϑp| < ωω · ϑp

then
10: Add patch to candidates
11: end if
12: end for
13: for each patch in candidates do
14: X

r

N
, X
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N
↓ X

r↑µr

ωr
,
X
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15: for each x in patch do
16: if |Xr

N
(x)↗X

p

N
(x)| < εr then

17: Add x to CP

18: end if
19: end for
20: if CP is not empty then
21: ϑ

→ ↓ µ(Xr[CP ])
µ(Xp[CP ])

22: end if
23: end for
24: X

p

iter+1 ↓ ϑ
→ ·Xp

25: end for
26: return X̂

p = ϑ
→ ·Xp

27: end procedure

If the number of “correct points” is insufficient, i.e.,
|CP | < ϖNp, where Np represents the number of points
in the pointmap, we apply a scale remedy strategy. Specifi-
cally, we use the fast NN algorithm [19] to establish match-
ing points MP between the current frame Xp

n
and the adja-



Parameter P ωµ ωω εr max iter ϑ

Value 10 0.3 0.3 0.1 3 0.01

Table 6. Hyperparameters for Patch-Based Scale Alignment
on three datasets.

cent keyframe aligned pointmap X̂
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aligned with the scene scale, it serves as a reference to cal-
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We believe that our carefully designed Algorithm 1 pro-
vides the most reliable scale factor. Therefore, we first com-
pute X

p

max iter+1 ↓ ϑ
→ ·Xp and then perform an additional

iteration of the Patch-based Scale Alignment process to ob-
tain a newly estimated scale factor ϑ

→→. If the number of
“correct points” is sufficient, we adopt this iteration’s result
as the final output for scale alignment. However, if the num-
ber remains insufficient, we use ϑ

→→ as a remedial scale fac-
tor. Although this is not the ideal scenario, it still provides
an adequate scale correction for the pre-trained pointmap
X

p, effectively mitigating severe scale drift. Moreover, ex-
periments show that the number of keyframes requiring a
remedial scale factor does not exceed three per scene on av-
erage.

The parameter selection for the algorithm is shown in Ta-
ble 6. Across three outdoor datasets, our method operates
with the same parameters without requiring additional tun-
ing for different scenes, demonstrating its robustness and
generalizability.

7.3. Pointmap Supervision
To avoid inserting Gaussians at incorrect positions at
keyframes, we replace “incorrect points” in the rendered
pointmap X

r with the aligned pretrained pointmap X̂
p,

as shown in Section 3.3.2. For all three datasets, we set
εm = 0.15 to replace points with significant discrepancies.

Notably, when camera viewpoint changes are relatively
mild and the Gaussian scene within view remains largely
complete (e.g., in straight-line trajectories), the proportion
of replaced points is around 10%, ensuring consistent scale
for newly inserted Gaussians. In contrast, when viewpoint
changes are large and the Gaussian scene has deficiencies
(e.g., during sharp turns), the replacement ratio increases to
30%-50%. In such cases, the priority is to prevent inserting
outlier Gaussians, while the aligned pre-trained pointmap is
sufficient to maintain scale consistency. This demonstrates
the dynamic adaptability of our method to complex environ-
ments. Additionally, we incorporate the Gaussian pruning
approach proposed by [22] to remove outlier Gaussians dur-
ing map optimization.

Method ATE PSNR GPU Time

DROID-SLAM 1.30 - 11 G → 1.5 min
MASt3R-SLAM 1.35 - 7 G →2 min
MonoGS 5.68 13.3 9 G →5 min
OpenGS-SLAM 1.41 17.9 9 G →10 min
CF-3DGS 5.99 15.9 12 G → 120 min
Splat-SLAM 1.25 19.5 10.5 G →36 min

Ours 0.55 20.6 9.5 G →5 min

Table 7. Added Comparison on KITTI.

Patch Size 5 8 10 12 16 20 25 30

ATE 1.35 0.62 0.55 0.57 0.49 0.69 0.73 0.97
PSNR 18.9 20.1 20.6 20.5 20.8 20.0 20.1 19.5

Table 8. Impact of patch size on KITTI.

7.4. Gaussian Map Optimization
In Section 3.3.3, we optimize the Gaussian map within the
keyframe window W . For three datasets, we set ϱiso =
10,ς = 0.98. In relatively confined scenes where pointmap
values exhibit limited variation, we recommend using a
smaller ς, such as 0.96.

8. Additional Experiments
We conducted additional experiments on the KITTI-07 se-
quence, including further comparisons with CF-3DGS [7]
, MASt3R-SLAM [19], DROID-SLAM [27], and Splat-
SLAM [33]. We also analyzed runtime and memory con-
sumption, and performed an ablation study on the patch size
used in Algorithm 1.

8.1. Added Comparison
Tab. 8 shows that CF-3DGS performs significantly worse
on the KITTI dataset, while our method achieves notably
higher tracking accuracy compared to both DROID-SLAM
and MASt3R-SLAM. These improvements stem from our
targeted design tailored to the characteristics of outdoor en-
vironments and a specific remedy for the scale issues in the
MASt3R framework.

8.2. Running Time and Memory
Tab. 8 shows that, compared to other 3DGS-based SLAM
methods, our approach achieves higher accuracy while
maintaining acceptable runtime and memory consumption.
Although Splat-SLAM also achieves competitive novel
view synthesis (NVS) accuracy, its extensive global opti-
mization procedures incur significant additional runtime.
Note: To ensure high-quality rendering and fair compari-
son, all the above 3DGS-based methods perform approxi-
mately 10 minutes of color refinement after SLAM execu-
tion. The reported runtime includes only the full SLAM
pipeline, excluding post-processing.



MonoGS  ATE : 7.32 OpenGS-SLAM  ATE : 5.14 Ours  ATE : 0.47

MonoGS  ATE : 2.92 OpenGS-SLAM  ATE : 0.97 Ours  ATE : 0.39
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Figure 7. Comparison of Tracking Trajectories with MonoGS
and OpenGS-SLAM.

8.3. Ablation Study on Patch Size
Tab. 8 shows that a patch size of 10–16 is optimal: larger
patches introduce too many outliers, while smaller ones
yield noisy statistics.

9. Additional Qualitative Results
Figure 7 presents additional trajectory comparisons, further
highlighting the robustness of our method in location under
challenging outdoor environments.

Figures 8 to 10 shows additional novel view synthesis re-
sults in the Waymo, DL3DV, and KITTI datasets. Clearly,
our method produces higher-fidelity images and more accu-
rate depth maps.

10. Limitations and Future Works
1. Our method cannot handle dynamic objects in outdoor

scenes. Monocular RGB-only SLAM for outdoor envi-
ronments with dynamic objects remains a highly inter-
esting and challenging problem.

2. Our method does not incorporate loop closure or global
BA. While their inclusion would benefit long-sequence
SLAM, it also introduces challenges related to training
time and memory consumption.
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Figure 8. Novel View Synthesis Results on Waymo, including Rendered RGB and Depth Maps.
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Figure 9. Novel View Synthesis Results on DL3DV, including rendered RGB and depth maps.



PSNR: 14.40 PSNR: 17.45 PSNR: 22.53

PSNR: 17.78 PSNR: 18.66 PSNR: 20.38

PSNR: 16.65 PSNR: 20.38 PSNR: 23.36

PSNR: 17.87 PSNR: 21.41 PSNR: 24.53

PSNR: 16.67 PSNR: 17.73 PSNR: 24.64

PSNR: 16.80 PSNR: 15.29 PSNR: 25.03

PSNR: 18.76 PSNR: 16.86 PSNR: 22.88

GlORIE-SLAM OpenGS-SLAM Ours Ground Truth

Figure 10. Novel View Synthesis Results on KITTI, including Rendered RGB and Depth Maps.


