Perspective-aware 3D Gaussian Inpainting with Multi-view Consistency

Supplementary Material

A. Preliminaries

In this section, we first briefly review some preliminaries
related to 3D Gaussian splatting and 2D diffusion inpainter
used in PAlnpainter’s framework.

3D Gaussian Splatting. 3D Gaussian Splatting (3DGS) is
proposed to represent 3D scenes with 3D Gaussian prim-
itives. Given a training dataset I of multi-view 2D im-
ages with camera poses P, 3DGS learns a set of colored
3D Gaussians G = {g1, 82, ...,8n }, where N denotes the
number of 3D Gaussians in the scene, g; = {u, 3, ¢, @} and
i € {1,...,N}. Specifically, y is the position where the
Gaussian is centered, > denotes the 3D covariance matrix, ¢
is the RGB color and « is the opacity attribute. Accordingly,
3DGS proposes a novel differentiable rasterization for effi-
cient training and rendering. The rendering process can be
formulated as

i—1

C= Y aoi[[(1-ay), 4)

iEN j=1

where o; = aie_%(z’)mfl(m") represents the influence of
the Gaussian to the image pixel and z; is the distance be-
tween the pixel and the center of the i-th Gaussian. Addi-
tionally, the 3DGS training process is based on successive
iterations of rendering and comparing the resulting image
to the training views in I.

Notably, from the neural representation aspect, the
3DGS inpainting can be regarded as fine-tuning a pretrained
3DGS scene G,, with unknown region using a dataset of in-
painted 2D images L;ypainted-
2D diffusion inpainter. 2D diffusion inpainter is a variant
of Latent Diffusion Models (LDMs) focusing on inpaint-
ing masked area of 2D image [34]. In LDMs, a powerful
pretrained Vector Quantised-Variational AutoEncoder (VQ-
VAE) model [38] is employed to encode and decode the
images to and from latent representations and the UNet [35]
works for denoising the encoded image latent. Additionally,
by introducing cross-attention layers into the UNet architec-
ture, the generation can be controlled by text or other con-
ditions. As a variant, the 2D diffusion inpainter expanded
the UNet in LDMs to digest the mask conditioned features
with unmasked area as priors and text as control condition.
Thereby, the input of 2D diffusion inpainter is formulated
as:

T = [zt;M;zM] e REXWX9 (5)

where ¢ indicates the time step in the diffusiqn; z; denotes
the 4-channel noised latent of input image; M denotes the
1-channel binary-value mask down-sampled aligned with

the size of image latent; zng denotes the 4-channel noise-
free latent feature in unmasked region. Together with en-
coded text prompt y by the textual CLIP model [33], the M
and zpp are concatenated as the input condition for UNet
to get noise €g(x¢,t,y). The scheduler in 2D diffusion in-
painter denoises the image latent in an iterative manner, and
the final denoised latent is decoded to produce the inpainted
image.

B. Implementation Details

B.1. Experiment Setup

Method implementation. The implementation of our 3D
Gaussian Splatting (3DGS) is built upon the Nerfstudio
framework. For scene initialization, we encountered a sig-
nificant challenge: the large masked regions with black
color in multi-view images prevent COLMAP from extract-
ing valid 3D point clouds for 3DGS initialization. To ad-
dress this, we leverage the available camera poses from the
datasets and adopt different initialization strategies based
on scene characteristics. For most scenes, we normalize the
camera poses and randomly initialize 50k points within a
unit cube to form the point cloud. However, for the scenes
from SPIn-NeRF dataset, which feature uniform facet cam-
era poses that make reconstruction from random initializa-
tion particularly challenging, we utilize their pre-computed
3D point clouds for initialization. This choice is justified by
the difficulty in achieving stable reconstruction from ran-
dom initialization under such camera configurations. To
ensure fair comparison, all baseline methods in our exper-
iments share identical experimental conditions, including
multi-view images, camera poses, initial masked 3D Gaus-
sian scene representations, and the optimization process of
3D Gaussians during inpainting.
Pretrained models. Our framework leverages several
state-of-the-art pretrained models from official repositories.
For image inpainting, we adopt the “stable-diffusion-2-
inpainting” model from stabilityai (Hugging Face), denoted
as SD2, which serves as the primary inpainting engine for
all baseline methods except MVInpainter (which employs
its proprietary pretrained models). Meanwhile, we adopt
the same setting in NeRFiller, i.e. all image inpaintings are
performed under the default SD2’s scheduler with twenty
diffusion steps. This choice is motivated by SD2’s superior
performance and stability in general inpainting tasks.

The pipeline integrates multiple specialized models for
different components:
- Depth Estimation: The pretrained ZoeDepth model

("ZoeD-NK”) along with off-the-shelf weights from the

official torch hub, chosen for its robust depth prediction
capability in diverse scenarios. Although our framework
implements the inpaint content propagation through vi-
sual projection, it remains robust against flaws caused
by depth estimation under extreme condition, thanks to
our iterative inpainting strategy. Additionally, the in-
paint content propagation module in our framework only
provides SD2 with prior information during inpainting
process.To verify the reliability and generalization of
ZoeDepth within our framework for 3D inpainting across
various scenarios, including object-centric, indoor and
outdoor scenes, we conducted comprehensive experi-
ments on the three datasets mentioned in the main paper.
- Feature Extraction: We utilize the pretrained ResNet18
model from torchvision (default IMAGENET1K-V1 ver-
sion), where we remove the last layer classification head
and extract intermediate features for dual-feature consis-
tency verification. This lightweight architecture enables
efficient inference while maintaining high-quality feature
representation
- Geometric Correspondence: The official LoFTR model
for perspective graph construction, utilized without mod-
ifications due to its proven effectiveness in establishing
reliable cross-view correspondences
We maintain all models in inference mode without fine-
tuning, leveraging their well-established performance as
strong baselines in their respective domains. This design
choice ensures reproducibility and demonstrates the gener-
alization capability of our method. The consistent applica-
tion of these models across all experimental comparisons
guarantees fair evaluation.
Hardware Configuration and Runtime Environment.
All experiments are conducted on a server equipped with
two NVIDIA RTX 3090 GPUs. We optimize the compu-
tational pipeline by dedicating one GPU to 3D Gaussian
scene optimization tasks, while the other GPU handles the
inference of pretrained models for image inpainting, depth
estimation, and feature extraction. This parallel process-
ing strategy significantly enhances computational efficiency
while maintaining stable performance.

B.2. Hyper-parameters Explanation

There are several hyper-parameters used in our PAlnpainter
implementation and we explain and discuss them here.

7 for perspective graph construction. In our graph con-
struction process, we employ feature matching to establish
correspondences between multi-view images and utilize the
average confidence score of matches to define the perspec-
tive distance between views. A higher average confidence
score indicates closer perspective distance. Despite the
promising performance of state-of-the-art feature match-
ing models like LoFTR, challenging cases (e.g., significant
viewpoint changes, textureless regions) may still produce

unreliable matches with low confidence scores. To enhance
the robustness of our graph construction method, we intro-
duce a confidence threshold 7 to filter out potentially unre-
liable matches. This filtering strategy effectively mitigates
the impact of outliers and improves the overall stability of
perspective distance estimation. We empirically set 7 = 0.4
across all scenes in our experiments for two main reasons:
1) This value maintains a balance between match quality
and quantity, ensuring sufficient valid matches for reliable
perspective distance computation, and 2) It demonstrates
consistent performance across diverse scenes with different
viewpoint distributions and geometric complexities.While
the specific choice of 7 may affect individual match selec-
tion, our experiments indicate that moderate variations in
the perspective graph do not significantly impact the overall
inpainting performance. This robustness can be attributed to
our method’s inpaint content propagation strategy and con-
sistency verification mechanism. However, for scenes with
sparse viewpoint sampling or challenging viewing condi-
tions, a lower 7 value might be necessary to retain adequate
matches for meaningful perspective distance estimation.

k for adaptive adjacent images sampling. When perform-
ing consistent multi-view inpainting, we sample k adjacent
images from the perspective graph for each anchor image.
These sampled images form a batch for joint inpainting and
subsequent 3D Gaussian optimization. In our experiments,
we did not search the optimal value of & and consistently
set k = 8 across all scenes to ensure fair comparison .
While this parameter demonstrates robust performance in
our framework, its value can be task-dependent and war-
rants careful consideration based on the following factors:

1. Lower Bound Constraint: An insufficient £ may lead
to disconnected sub-graphs during the sampling process,
potentially hampering inpaint content propagation. Con-
sider a scenario where k& = 2 and three images form a
cyclic nearest neighbor relationship. This configuration
necessitates additional heuristic-based anchor image se-
lection to bridge disconnected components, introducing
computational overhead and potentially compromising
propagation efficiency.

2. Upper Bound Consideration: Conversely, an excessive
k can also impact computational efficiency. As demon-
strated in our findings (Sec. 3.1), the effectiveness of
content propagation diminishes with increasing perspec-
tive distance between views. Including too many distant
views in the sampling set may introduce redundant com-
putations without contributing meaningful priors, poten-
tially diluting the consistency of the inpainting results.

In practical applications, the selection of k should pri-
oritize addressing the lower bound constraint to ensure con-
nected graph components and effective content propagation.
The upper bound consideration is less critical due to our
consistency verification mechanism, which filters out incon-

sistent inpainting candidates during the refinement stage.
While a larger £ might affect computational efficiency, it
does not significantly compromise the final inpainting qual-
ity thanks to this verification safeguard.

m for inpainted candidates in consistency verification.
To achieve consistency verification, we need to generate
multiple (/) inpainted candidates for each adjacent image.
Thanks to our inpaint content propagation before images
inpainting, most inpainted candidates are highly consistent
with the anchor image. However, due to the randomness
attribute of diffusion model, the consistency verification is
still really important to enhance the multi-view consistency
of 3D inpainting, which can be seen from our experiment
results in ablation study Sec. 4. To avoid the high time con-
sumption overhead, we set m = 4 across all our experi-
ments.

n for dual-feature consistency score. In our consis-
tency verification mechanism, we propose a weighted dual-
feature consistency score that combines texture and depth
features, formulated as S = 0S,4 + (1 — 1) Sqeptn, Where
Srgp and Sgepen, Tepresent the respective similarity scores.
Through extensive experiments, we empirically set n = 0.7
to prioritize fine-grained texture consistency while main-
taining the benefits of geometric constraints. This weight-
ing strategy reflects our emphasis on texture features, which
directly capture the visual quality of inpainted regions,
while also leveraging depth information as a valuable com-
plementary cue. The relatively lower weight assigned to
depth similarity helps mitigate potential errors introduced
by the pretrained depth estimator in challenging scenes,
while still providing crucial geometric constraints. This
is particularly important given our use of a lightweight
ResNet18 for texture feature extraction, which, while com-
putationally efficient, may occasionally struggle to discrim-
inate subtle texture differences under low-light conditions
or in regions with repetitive patterns. In such scenarios, the
depth features computed from colored depth maps demon-
strate superior discriminative power, contributing signifi-
cantly to the robustness of our consistency verification. Our
experiments show that this balanced weighting approach
provides consistent and reliable performance across diverse
scenes without requiring scene-specific parameter tuning,
effectively combining the strengths of both texture and geo-
metric features while maintaining computational efficiency.

Notably, the consistent performance achieved with these
empirically determined hyper-parameters (7, k, m and),
without scene-specific tuning, underscores the robustness
and practical utility of our method, making it readily ap-
plicable to real-world scenarios while maintaining its effec-
tiveness.

Algorithm 1 Adaptive sampling algorithm

1: Input: perspective graph G, adjacent hyper-parameter
k, Iterations iters, threshold of consistency score 7

2: Initialize: Anchor set A < 0, Inpainted set P <« (),
Masked image indices setZ = [;,i € {1,..., N}

3: Select initial anchor I randomly from G

4: while step < iters & Z # 0 do

5: Z,q; < k nearest neighbors of I; from G

6: Update A <— AU {L;} UZy4[: [k/2]]

7: Iadj — Iadj NZU {It}

8 if Z,4; # 0 then

9 I(’Ldj « inpainted Z 4

10: Sadj < consistency score of inpainted Zj, ;;
11: Update Z <~ 7 \ Iz/zdj [Sadj > Tq]

12: Update P <~ PUZ,

13: Optimize 3D Gaussains with P

14: end if

15: Select I; < random sample from (Z \ A) NP
16: end while

17: while step < iters do

18: Optimize 3D Gaussains with P

19: end while

B.3. Adaptive Sampling Algorithm

We formalize the adaptive sampling algorithm detailed in
Sec. 3.3 into pseudo-code format (Algorithm 1) with the
following key implementation details:

+ State 6: We maintain an anchor image set .4 to prevent
repetitive selection of previous anchors. Additionally, the
k/2 adjacent images of any anchor are excluded from fu-
ture anchor selection to avoid local saturation in the per-
spective graph, ensuring comprehensive coverage of the
view space.

 State 7: The masked image set Z adaptively tracks views
requiring inpainting or refinement. Following our adap-
tive strategy described in Sec. 3.3, images with lower con-
sistency scores remain in this set for subsequent refine-
ment iterations.

o State 11: Images achieving consistency scores above
the empirically determined threshold 75 = 0.9 are re-
moved from the masked set Z, effectively identifying
well-inpainted views that require no further processing.

* State 12: An inpainted image set P is maintained to track
all processed views throughout the algorithm’s execution.

» State 15: New anchor images are selected exclusively
from the inpainted set P, excluding both previous an-
chors (A) and well-inpainted views. This ensures effec-
tive propagation of high-quality inpainting results while
avoiding redundant processing.

C. Quantitative and Qualitative Results

We provide comprehensive scene-specific evaluation results
to complement the average performance metrics presented
in our main comparisons against state-of-the-art baseline
methods. The detailed quantitative results for individual
scenes are presented in Tab. 1, Tab. 2 and Tab. 3 for PSNR
metrics, Tab. 4, Tab. 5 and Tab. 6 for SSIM metrics, and
Tab. 7, Tab. 8 and Tab. 9 for LPIPS metrics across NeRF
Blender dataset, SPIn-NeRF dataset and NeRFiller dataset.
In addition, we discuss the performance variation with re-
gards to mask types and area ratios in Tab. 10 (please find
the examples of different mask types in main part Fig. 7),
which demonstrate that performance variation is primarily
influenced by mask type at reasonable ratios. PAlnpainter
performs better on real-world scenes and textured object
scenes with more priors (SPIn-NeRF & NeRFiller) despite
larger mask ratios, compared to synthetic Blender scenes.
This also reveals the 2D diffusion inpainting model’s input
pattern sensitivity.

We provide more supplementary qualitative results to
show the details results of PAlnpainter and other state-of-
the-art approaches in Fig. 1, Fig. 2, Fig. 3 and Fig. 4.

‘ ficus ship lego drums hotdog microphone materials chair Avg. 1

Masked 3DGS 9.89 13.81 12.04 11.65 1292 9.90 11.36 11.03 11.57
SD2 2092 20.22 19.68 17.88 22.69 17.64 22.14 22.18 20.42
M Vinpainter 19.56 23.03 17.05 16.14 25.41 12.92 20.15 21.10 1942
Grid Prior + DU 2334 2297 2133 2031 2495 22.22 22.17 2491 2277
NeRFiller 26.86 2432 2273 21.63 24.89 20.61 20.12 25.05 23.27
PAlnpainter (ours) | 25.39 2429 21.70 2133 @ 26.05 23.28 24.84 26.64 24.19

Table 1. PSNR 3D inpainting results for NeRF Blender dataset.

‘1(bench) 2(tree) 3(backpack) 4(stairs) 7(well) 9(wall) 10(yard) 12(garden) book trash Avg. T

Masked 3DGS 12.07 12.77 11.88 9.86 12.74 13.98 16.89 12.00 1474 1772 1346
SD2 22.68 24.57 21.69 25.96 26.82 21.35 22.08 21.38 2342 2489 2348
M Vinpainter 22.94 23.25 20.85 28.15 28.35 2341 24.17 23.93 26.72 26.18 24.80
Grid Prior + DU 22.06 24.69 21.25 28.28 27.89 24.43 24.61 22.04 28.55 28.07 25.19
NeRFiller 23.08 24.74 21.76 28.03 26.42 24.66 24.11 23.72 28.10 27.41 25.20
PAlInpainter (ours) 23.73 24.93 21.26 29.39 28.59 25.05 25.40 24.31 2925 2841 26.03

Table 2. PSNR 3D inpainting results for NeRF SPIn-NeRF dataset.

‘ billiards norway drawing office turtle kitchen bear boot cat dumptruck Avg. T
Masked 3DGS 10.26 14.58 14.32 12.06 18.91 1194 1313 976 15.70 8.82 12.95
SD2 25.41 20.81 2299 2499 19.16 25.00 19.65 1472 16.50 14.37 20.36
M Vinpainter 28.43 24.93 2273 22.64 2035 2077 2224 1466 17.73 16.84 21.13
Grid Prior + DU 29.76 27.76 27.95 31.87 22.61 2791 2640 2663 23.85 24.99 26.97
NeRFiller 27.32 25.00 27.35 2575 2077 2531 2090 13.88 20.33 16.86 22.35

PAInpainter (ours) 29.43 30.72 29.26 33.14 3029 3039 2833 2955 26.06 27.90 29.51

Table 3. PSNR 3D inpainting results for NeRFiller dataset.

‘ﬁcus ship lego drums hotdog microphone materials chair Avg. T

Masked 3DGS 085 075 085 0.84 0.85 0.84 0.84 0.85 0.83
SD2 091 086 089 0.88 0.92 0.93 0.93 091 0.90
M Vinpainter 0.80 082 076 0.74 0.90 0.79 0.87 0.84 0.81
Grid Prior + DU 093 0.87 090 091 0.93 0.96 0.94 0.93 0.92
NeRFiller 094 088 092 091 0.94 0.93 0.92 0.93 0.92
PAlnpainter (ours) | 0.94 0.87 0.91 0.91 0.94 0.95 0.95 0.93 0.92

Table 4. SSIM 3D inpainting results for NeRF Blender dataset.

‘l(bench) 2(tree) 3(backpack) 4(stairs) 7(well) 9(wall) 10(yard) 12(garden) book trash Avg. 1

Masked 3DGS 0.28 0.13 0.31 0.64 0.50 0.18 0.50 0.12 071 0.77 0.41
SD2 0.61 0.72 0.73 0.83 0.81 0.54 0.78 0.65 081 0.80 0.73
M Vinpainter 0.58 0.67 0.70 0.83 0.84 0.64 0.80 0.81 0.76 0.81 0.74
Grid Prior + DU 0.57 0.71 0.74 0.87 0.86 0.68 0.86 0.78 091 0.89 0.79
NeRFiller 0.60 0.72 0.75 0.86 0.85 0.71 0.84 0.80 0.89 0.87 0.79
PAlInpainter (ours) 0.63 0.75 0.74 0.88 0.85 0.70 0.89 0.83 091 091 0.81

Table 5. SSIM 3D inpainting results for SPIn-NeRF dataset.

‘ billiards norway drawing office turtle kitchen bear boot cat dumptruck Avg. 1
Masked 3DGS 0.68 0.66 0.66 0.72 0.87 0.73 0.87 0.77 0.87 0.74 0.76
SD2 0.86 0.83 0.77 0.87 0.86 0.79 091 085 0.87 0.82 0.84
MVinpainter 0.85 0.75 0.65 0.83 0.85 0.66 0.89 082 0.85 0.81 0.80
Grid Prior + DU 0.92 0.91 0.86 095 091 0.86 096 095 0% 0.93 0.92
NeRFiller 0.89 0.88 0.86 0.90 0.89 0.80 092 085 0.90 0.87 0.88
PAlInpainter (ours) 0.92 0.93 0.88 095 0.96 0.90 096 096 094 0.95 0.94
Table 6. SSIM 3D inpainting results for NeRFiller dataset.
ficus ship lego drums hotdog microphone materials chair Avg. |
Masked 3DGS 021 026 0.17 0.18 0.19 0.19 0.17 0.18 0.19
SD2 0.07 0.13 0.09 0.11 0.09 0.09 0.05 0.08 0.09
M Vinpainter 020 0.12 0.19 0.21 0.08 0.35 0.08 0.15 0.17
Grid Prior + DU 0.07 @ 0.12 0.09 0.10 0.08 0.05 0.06 0.07 0.08
NeRFiller 0.06 0.13 | 0.08 0.09 0.08 0.08 0.08 0.08 0.09
PAlInpainter (ours) | 0.07 0.13 0.09 0.09 0.07 0.06 0.04 0.06 0.08
Table 7. LPIPS 3D inpainting results for NeRF Blender dataset.
‘ 1(bench) 2(tree) 3(backpack) 4(stairs) 7(well) 9(wall) 10(yard) 12(garden) book trash Avg. |
Masked 3DGS 0.51 0.55 0.42 0.30 0.34 0.65 0.24 0.61 027 0.16 0.40
SD2 0.37 0.24 0.13 0.14 0.11 0.47 0.13 0.39 0.16 0.13 0.23
M Vinpainter 0.42 0.34 0.19 0.11 0.10 031 0.13 0.17 0.17 018 021
Grid Prior + DU 0.44 0.35 0.18 0.12 0.14 0.26 0.11 0.21 0.08 0.08 0.20
NeRFiller 0.37 0.22 0.13 0.11 0.13 0.26 0.10 0.18 0.10 0.09 0.17
PAlInpainter (ours) 0.35 0.19 0.17 0.08 0.13 0.19 0.09 0.15 0.08 0.08 0.15
Table 8. LPIPS 3D inpainting results for SPIn-NeRF dataset.
billiards norway drawing office turtle kitchen bear boot cat dumptruck Avg. |
Masked 3DGS 0.33 0.32 0.33 0.28 0.21 0.29 0.19 030 0.21 0.33 0.28
SD2 0.11 0.17 0.19 0.16 0.17 0.16 0.11 0.21 0.20 0.26 0.17
MVinpainter 0.09 0.17 0.21 0.18 0.15 0.26 0.09 024 0.19 0.24 0.18
Grid Prior + DU 0.10 0.11 0.16 0.09 0.20 0.15 0.06 0.10 0.14 0.15 0.13
NeRFiller 0.10 0.13 0.14 0.14 0.16 0.15 0.08 024 0.15 0.22 0.15
PAlnpainter (ours) 0.07 0.07 0.12 0.08 0.07 0.08 0.05 0.06 0.11 0.10 0.08
Table 9. LPIPS 3D inpainting results for NeRFiller dataset.
| Mask types | Avg. mask area ratios
object-centric lgrge ind09r objefzt-.(:entric.large mgltiple disjoint <10% 10% ~ 20% 20% ~ 30%
removal missing region missing region missing regions
PSNR 26.43 30.61 25.10 28.23 26.18 25.59 29.56
SSIM 0.817 0.920 0.931 0.953 0.823 0.907 0.924
LPIPS 0.145 0.085 0.077 0.077 0.147 0.086 0.090
FID 124.9 96.0 100.3 76.9 117.6 101.4 104.7

Table 10. Performance variation upon different mask types/ratios (All 28 scenes)

Anchor image Adjacent image Anchor image Adjacent image Anchor image Adjacent image

Figure 1. The inpaint content propagation between anchor images and corresponding adjacent images. With our perspective graph sampling
strategy, the anchor image provides sufficient and accurate prior to adjacent images to guide consistent multi-view inpainting.

Anchor view

Candidate 1

Candidate 2

Candidate 3

Candidate 4

Figure 2. Visualization for consistency verification. Red contours delineate mask boundaries and green boxes highlight top-scoring
candidates selected for 3DGS optimization. The upper-left number of each candidate represents the consistency score. This module
reliably identifies inpainted regions exhibiting both textural and geometric consistency (zoom for details), enhancing performance and
robustness.

GridPrior+DU PAlnpainter (ours)

SD2

Figure 3. Details comparison in renderings of inpainted 3D scene, among PAInpainter, GridPrior+DU, SD2

NeFRiller PAlnpainter (ours)

MVInpainter

Figure 4. Details comparison in renderings of inpainted 3D scene, among PAInpainter, NeRFiller, MVInpainter

