
RegGS: Unposed Sparse Views Gaussian Splatting with 3DGS Registration

Supplementary Material

6. Entropy-Regularized Sinkhorn W2 Distance

Gradient Consistency Proof

The entropy-regularized Wasserstein distance
W

2
2,ω(GA, T (GB)), where ω > 0 is a regularization

parameter, provides a computationally feasible approach to
the infinite-dimensional optimization problem inherent in
calculating the exact Wasserstein distance W

2
2 . As ω → 0,

the gradient ↑εW
2
2,ω converges to the subgradient set of the

exact Wasserstein distance, denoted as εW 2
2 (ϑ):

lim
ω→0

↑εW
2
2,ω ↓ εW

2
2 (ϑ). (19)

Foundation of !-Convergence. According to optimal
transport theory [15], the entropy-regularized Wasserstein
distance satisfies !-convergence: for any probability distri-
butions GA and GB , as the regularization parameter ω ap-
proaches zero,

W
2
2,ω(GA, GB)

!↔→ W
2
2 (GA, GB), (20)

where !-convergence ensures that the sequence of minima
of the regularized problem converges to the optimum of the
original problem. Specifically, for a parametrized transfor-
mation T (ϑ), the minimization of the entropy-regularized
objective function W

2
2,ω approximates the non-regularized

objective W
2
2 in the limit.

6.1. Gradient Expression Derivation.

The entropy-regularized Wasserstein distance is defined as:

W
2
2,ω = min

ϑ↑”(wA,wB)

∑

i,k

ϖikCik(ϑ) + ω

∑

i,k

ϖik log ϖik,

(21)
where Cik(ϑ) = ↗µA

i ↔ µ
B↓
k ↗2 + Tr(”A

i + ”B↓
k ↔

2(”A
i ”

B↓
k )1/2) depends on the transformation parameters ϑ.

Using the implicit function theorem [13], the gradient of the
regularized problem can be expressed as:

↑εW
2
2,ω =

∑

i,k

ϖ
↔
ik(ω)↑εCik(ϑ), (22)

where ϖ
↔
ik(ω) is the optimal transport plan under entropy

regularization. This expression indicates that the gradient
is constituted by a weighted average of the cost function
gradients under the transport plan.

6.2. Convergence of the Transport Plan.

As ω → 0, the influence of the entropy regularization term
ω
∑

ϖik log ϖik diminishes. According to !-convergence,

any limit point of the regularized transport plan ϖ
↔
ik(ω) is an

optimal solution of the original Wasserstein problem, i.e.,

lim
ω→0

ϖ
↔
ik(ω) = ϖ

↔
ik ↓ argmin

ϑ

∑

i,k

ϖikCik(ϑ). (23)

Since multiple optimal transport plans may exist (e.g., mul-
tiple paths with the same minimum cost), ϖ↔ belongs to a
set of optimal solutions #↔.

6.3. Construction of the Subgradient Set

For a nonsmooth convex function W
2
2 , its Clarke subgradi-

ent is defined as:

εW
2
2 (ϑ) =





∑

i,k

ϖ
↔
ik↑εCik(ϑ) | ϖ↔ ↓ #↔




 . (24)

As ω → 0, the limit points of the regularized gradient
↑εW

2
2,ω =

∑
i,k ϖ

↔
ik(ω)↑εCik(ϑ) are determined by the

convergence of ϖ↔
ik(ω). Thus,

lim
ω→0

↑εW
2
2,ω =

∑

i,k

ϖ
↔
ik↑εCik(ϑ) ↓ εW

2
2 (ϑ), (25)

indicating that the regularized gradient converges to an ele-
ment of the subgradient set.

Although W
2
2 may be nonconvex with respect to ϑ, it

satisfies local Lipschitz continuity on any compact set [32],
ensuring the existence of subgradients.

If the original problem has a unique optimal transport
plan ϖ

↔, then the subgradient reduces to a singleton and
the gradient convergence path is unique; otherwise, conver-
gence is toward a specific direction within the subgradient
set.

The entropy-regularized gradient ↑εW
2
2,ω asymptoti-

cally approaches the exact Wasserstein subgradient direc-
tion as ω approaches zero. This property theoretically sup-
ports the hierarchical optimization strategy of gradually
reducing ω in our methodology: initially leveraging the
smoothness of the regularization term to avoid local minima
and eventually converging towards the direction of the exact
Wasserstein distance, thus achieving robust global distribu-
tion alignment.

7. Sinkhorn Algorithm Complexity

The main map and the submap contain M and N Gaus-
sian gradients, respectively. Initially, the first step of the
Sinkhorn algorithm involves constructing a kernel matrix



K ↓ RM↗N , whose elements are given by

Kik = exp

(
↔Cik

ω

)
, (26)

where Cik represents the 2-Wasserstein cost for the Gaus-
sian pair (NA

i , N
B→

k ). Calculating each Cik includes two
parts: one is the distance between means ↗µA

i ↔ µ
B→

k ↗2,
which has a complexity of O(1); the second is the covari-
ance term

Tr

(
”A

i + ”B→

k ↔ 2
(
”A

i ”B→

k

)1/2
)
, (27)

where the square root of the covariance matrix is usually
implemented via Cholesky decomposition, with a single
conjunction complexity of O(d3) (for a three-dimensional
space d = 3), but since all Gaussian covariances can be pre-
computed, this can be considered O(1) in the context of Cik

computation. Thus, the overall complexity of constructing
the kernel matrix K is O(MN).

Next, during the iteration phase, the Sinkhorn algorithm
manages u ↓ RM and v ↓ RN through alternating updates
to satisfy the marginal constraints, with the update formulas

u
(t) =

wA

K v(t↘1)
, v

(t) =
wB

K≃ u(t)
. (28)

Here, the complexity of multiplying the matrix with the
support (i.e., computing K v

(t↘1) and K
≃
u
(t)) incurs

O(MN), while the element-wise division to update u
(t)

and v
(t) has complexities of O(M) and O(N), respectively,

which are negligible compared to the previous step. There-
fore, each iteration’s computational complexity is O(MN).

After T iterations, the total time complexity is the kernel
matrix initialization O(MN) plus T ·O(MN), which is

O(MN) + T ·O(MN) = O(TMN). (29)

In practice, due to the introduction of the entropy regular-
ization term, which significantly speeds up convergence, ac-
cording to [15], the Sinkhorn algorithm typically converges
within T ↘ 50 iterations to a relative parameter ϱ < 10↘3,
a characteristic that has been verified in multiple optimal
transport libraries such as POT [19]. The detailed proce-
dure is described in the following Algorithm 1.

Moreover, although the theoretical time complexity is
O(TMN), in engineering implementations, various strate-
gies can reduce the sparsity factor, utilizing GPU sparsity
for computing the kernel matrix K and matrix multipli-
cations; employing safe logarithmic domain computations
(i.e., computing logKik = ↔Cik/ω) to sparsify and reduce
multiplication/division operations; and leveraging sparsity
methods to speed up by building a sparse kernel matrix re-
ducing the computational complexity to O(S) (where S ≃
MN is the number of non-zero elements).

Algorithm 1 Entropy-Regularized Optimal Transport
MW2 Distance

Require: • Gaussian components: {N (µA
i ,”

A
i )}Mi=1 and

{N (µB→

k ,”B→

k )}Nk=1.
• Marginal weights: wA ↓ RM and w

B ↓ RN .
• Regularization parameter: ω > 0.
• Maximum iterations: T .

Ensure: • Transport plan ϖ
↔ ↓ RM↗N .

• Entropy-regularized transport cost W 2
2,ω.

1: Step 1: Compute Cost Matrix C

2: for i = 1 to M do

3: for k = 1 to N do

4: Cik ⇐ ↗µA
i ↔ µ

B→

k ↗2 + Tr
(
”A

i + ”B→

k ↔

2
(
”A

i ”
B→

k

)1/2)

5: end for

6: end for

7: Step 2: Compute Kernel Matrix K

8: for i = 1 to M do

9: for k = 1 to N do

10: Kik ⇐ exp
(
↔Cik

ω

)

11: end for

12: end for

13: Step 3: Initialize scaling vectors

14: u ⇐ 1M ς 1M denotes a vector of ones with length M

15: v ⇐ 1N ς 1N denotes a vector of ones with length N

16: Step 4: Perform Sinkhorn Iterations

17: for t = 1 to T do

18: u ⇐ w
A ⇒ (K v) ς ⇒ denotes element-wise

division
19: v ⇐ w

B ⇒ (K≃
u)

20: end for

21: Step 5: Compute the Transport Plan

22: ϖ
↔ ⇐ diag(u)K diag(v)

23: Step 6: Compute the Entropy-Regularized Trans-

port Cost

24: W
2
2,ω ⇐

∑M
i=1

∑N
k=1 ϖ

↔
ik Cik

25: return ϖ
↔
, W

2
2,ω

In summary, under entropy regularization, the Sinkhorn
algorithm’s time complexity is O(TMN), where T is the
number of iterations (usually T ↘ 50). In practical applica-
tions of 3D Gaussian map registration (e.g., M,N ↘ 105),
a single iteration takes about 10ms, and with GPU sparsifi-
cation and sparsity priors, this method can achieve fast pro-
cessing of large-scale 3D Gaussian map registration prob-
lems.

8. Additional Experimental Results

Figure 8 illustrates the generalization of our method on real
video data, where we uniformly sampled four frames from



Method
2! 16! 64!

PSNR↑ Time↓ GPU(GB)↓ PSNR↑ Time↓ GPU(GB)↓ PSNR↑ Time↓ GPU(GB)↓

Splatt3R 13.951 20s 7.3 - - - - - -
NoPoSplat 23.247 22s 3.9 - - - - - -
DUSt3R* 18.484 259s 3.5 24.714 22min 10.5 OOM OOM OOM
MASt3R* 16.036 283s 3.7 24.249 23min 4.5 28.826 54min 41.3

Ours 24.272 259s 3.9 28.663 57min 12.1 28.703 165min 12.1

Figure 7. Additional quantitative comparison on RE10K showing runtime and memory usage across different input view counts.

PSNR: 29.95 GT

Figure 8. Generalization results using a real video. Four frames
were uniformly sampled and used for sparse reconstruction to
demonstrate the method’s applicability to real-world scenarios.

Figure 9. Sub gaussians from NoPoSplat. These sub Gaussians
generated by NoPoSplat indicate that, in certain scenes, the Gaus-
sians produced by NoPoSplat exhibit abnormalities in their spatial
structure.

a video and used a pretrained feed-forward Gaussian model
to extract local 3D Gaussian representations. These repre-
sentations were registered and fused by the RegGS method
into a consistent 3D Gaussian scene. Results confirm the
method’s effectiveness in achieving precise camera local-
ization and scene alignment even with sparse viewpoints,
thus generating high-quality novel views suitable for real-
world applications.

We evaluate runtime and memory across sampling ratios
from 2x to 64x using 200-frame sequences. As shown in
Tab. 7, RegGS maintains controlled memory usage across
all input settings. In contrast, NoPoSplat and Splatt3R are
limited to two-view inputs, while DUSt3R and MASt3R ex-
hibit exponential growth in Gaussian count, frequently re-
sulting in out-of-memory failures. This demonstrates the
scalability of RegGS under sparse view conditions. At 64x,
as view coverage becomes denser, the reconstruction bottle-
neck shifts from view sparsity to the capacity of the 3DGS
representation. RegGS achieves comparable reconstruction
quality to MASt3R with significantly lower memory con-
sumption. Further optimization of MW2 computation re-

PSNR: 31.60 GT

Figure 10. Visual Comparison. It is noticeable that there are many
prominent noise points on the wall. Our method, in certain scenes,
may produce high PSNR values, but visually, there are clearly vis-
ible noise artifacts.

mains a direction for future work.

9. Additional Limitations

Figure 9 demonstrates that NoPoSplat generates suboptimal
Gaussians in certain scenes. In the depicted scenario, No-
PoSplat struggles to accurately estimate the depth informa-
tion of the reflective surface, causing the gaussians to fail
at capturing the spatial geometry effectively. RegGS relies
on the quality of the Gaussian model generated by the up-
stream model, and abnormal gaussians introduced during
scene fusion can lead to errors.

Figure 10 shows that, in certain scenes, while our method
achieves high PSNR values, there are noticeable noise arti-
facts. These noise points are likely introduced during the
refinement stage or could be a result of the low image res-
olution used in our quantitative evaluation. In future work,
we will attempt to address this issue.


