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A. Additional Experiments

A.1. Path Straightness
We measure path straightness using Eq. (18) from [13], with 10K samples (conditions sampled from the validation sets) and
25 steps in Tab. A1. Specifically, we measure

Et,q(x0)

[
∥vθ,c(t, ψt(x0))∥2 − ∥ψ1(x0)− x0∥2

]
, (A1)

where ψt(x0) denotes the numerical integration result when integrating x0 from 0 to t following the flow field represented by
vθ,c. Our method consistently achieves straighter paths than FM. Although OT has even straighter paths, the end points of
these paths do not accurately model the target distribution, indicated by the higher FID.

CIFAR ImageNet32 ImageNet256

Straightness ↓ FID ↓ Straightness ↓ FID ↓ Straightness ↓ FID ↓

FM 110.83±0.20 5.64 133.95±0.34 7.17 4803.0±79.8 3.90
OT 73.54±0.24 6.82 97.71±0.23 7.85 4088.6±37.5 7.48
C2OT (ours) 84.99±0.26 5.64 122.54±0.34 7.07 4625.2±54.5 3.70

Table A1. Path straightness and FID of FM, OT, and C2OT.

A.2. Class-to-Image
We supplement our existing CIFAR-10 class-to-image experiments (??) with additional class-to-image results on ImageNet32.
Results in Tab. A2 are consistent with existing findings.

ImageNet 32×32 Class-Conditioned Generation
Method Euler-2 Euler-5 Euler-10 Euler-25 Euler-50 Euler-100 Adaptive

FM 116.296 22.224 9.530 5.892 5.334 5.116 4.993
OT 71.700 20.703 11.385 8.065 7.492 7.303 7.316
C2OT (ours) 81.480 18.285 8.661 5.607 5.201 5.055 5.035

Table A2. Class-to-image performance comparisons on ImageNet-32.

A.3. Predicting Conditions from Coupled Prior
We note that OT degrades less significantly in high-dim as it skews the prior less (but still does), since mini-batch OT becomes
noisy in high-dim. To quantify, we train a condition-classifier with the coupled prior (x0) as input (e.g., in Fig. 2 of the main
paper, a classifier can perfectly predict the condition based on x0) on CIFAR with varying resolutions and number of dims. We
collect 100K couplings for training, and divide them into an 80:20 train/test split. Tab. A3 shows the results: as the number of
dimensions increases, the classifier becomes less accurate (less prior skew) for OT. Both FM and C2OT lead to unbiased prior,
so the classifier performs at random guess accuracy (10%).

Method 2× 2 4× 4 8× 8 16× 16 32× 32

FM 10.0%±0.3 9.9%±0.1 10.0%±0.3 9.9%±0.2 9.8%±0.1
OT 29.7%±0.4 27.3%±0.3 24.4%±0.4 22.6%±0.3 20.1%±0.3
C2OT (ours) 10.0%±0.3 10.0%±0.3 10.0%±0.3 9.9%±0.2 9.9%±0.2

Table A3. Test-set classification accuracy of predicting the conditioning class when given the coupled input noise in the CIFAR-10 dataset.

A.4. Extended Results with Different OT Batch Sizes

We compare OT batch size scaling of OT and C2OT in Table A4. The results are consistent with our findings in ?? – OT has
better FID with few steps but does not align well with the input condition (worse CE), and increasing OT batch size improves
few-step performance and slightly harms many-step performance.
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Method (OT batch size) Euler-2 Euler-5 Euler-10 Euler-25 Euler-50 Euler-100 Adaptive NFE ↓

FI
D

↓
OT (128) 64.305±0.593 18.033±0.566 10.659±0.354 6.753±0.26 5.326±0.157 4.639±0.084 4.142±0.015 125.6±0.5
OT (640) 59.506±0.976 18.710±0.673 11.588±0.475 7.555±0.301 5.997±0.222 5.232±0.175 4.624±0.122 126.1±1.1
OT (1280) 57.656±1.075 18.206±2.063 11.284±1.707 7.452±1.116 6.036±0.696 5.374±0.408 4.895±0.044 125.1±6.5
OT (2560) 56.186±0.876 17.976±1.752 11.084±1.682 7.381±1.078 6.068±0.633 5.473±0.325 5.071±0.074 125.8±7.1
OT (5120) 54.966±0.212 19.399±0.194 12.563±0.112 8.498±0.056 6.869±0.038 6.042±0.042 5.352±0.074 128.0±3.0
C2OT (128) 74.517±0.075 18.281±0.443 9.704±0.326 5.536±0.193 4.077±0.135 3.391±0.101 2.880±0.059 124.0±2.5
C2OT (640) 64.849±0.474 17.572±0.263 9.770±0.195 5.634±0.112 4.150±0.083 3.446±0.068 2.905±0.047 127.2±0.3
C2OT (1280) 61.850±0.373 17.325±0.407 9.706±0.321 5.668±0.206 4.200±0.147 3.495±0.102 2.951±0.048 124.1±0.9
C2OT (2560) 59.361±0.324 17.213±0.297 9.795±0.200 5.712±0.149 4.213±0.102 3.496±0.068 2.942±0.030 125.5±0.7
C2OT (5120) 56.011±0.556 17.046±0.185 9.904±0.205 5.830±0.126 4.291±0.079 3.536±0.054 2.945±0.022 128.7±0.7

C
E

↓

OT (128) 2.525±0.015 0.619±0.016 0.425±0.006 0.368±0.004 0.361±0.004 0.363±0.006 0.371±0.006 125.6±0.5
OT (640) 2.386±0.048 0.672±0.018 0.470±0.011 0.405±0.008 0.393±0.006 0.392±0.007 0.398±0.008 126.1±1.1
OT (1280) 2.348±0.057 0.690±0.030 0.487±0.015 0.427±0.009 0.422±0.005 0.425±0.003 0.435±0.007 125.1±6.5
OT (2560) 2.298±0.031 0.702±0.020 0.505±0.010 0.443±0.006 0.436±0.008 0.438±0.011 0.447±0.014 125.8±7.1
OT (5120) 2.277±0.029 0.742±0.006 0.537±0.012 0.464±0.009 0.453±0.008 0.453±0.007 0.461±0.006 128.0±3.0
C2OT (128) 2.636±0.033 0.485±0.007 0.317±0.004 0.270±0.004 0.265±0.001 0.266±0.002 0.271±0.004 124.0±2.5
C2OT (640) 2.270±0.021 0.477±0.012 0.321±0.005 0.276±0.008 0.272±0.004 0.273±0.005 0.280±0.005 127.2±0.3
C2OT (1280) 2.166±0.032 0.475±0.010 0.324±0.008 0.279±0.003 0.273±0.004 0.274±0.003 0.281±0.003 124.1±0.9
C2OT (2560) 2.049±0.005 0.468±0.005 0.321±0.003 0.278±0.006 0.272±0.007 0.272±0.007 0.277±0.008 125.5±0.7
C2OT (5120) 1.910±0.037 0.463±0.006 0.327±0.008 0.282±0.005 0.278±0.005 0.279±0.004 0.284±0.004 128.7±0.7

Table A4. Performance of OT and C2OT in CIFAR-10 when trained with different OT batch sizes.

A.5. Extended Results with Different Target Ratios

We list additional results on ImageNet-32 and ImageNet-256 in Table A5: rtar = 0.01 generally strikes a good balance, but we
note that it might not be optimal for all datasets.

ImageNet 32×32 Caption-Conditioned Generation
rtar Euler-2 Euler-5 Euler-10 Euler-25 Euler-50 Euler-100 Adaptive

0.005 104.386 22.254 10.939 7.015 6.022 5.576 5.284
0.01 102.380 21.965 10.897 7.069 6.084 5.638 5.350
0.1 82.456 20.820 11.035 7.438 6.501 6.080 5.843

ImageNet 256×256 Caption-Conditioned Generation

0.005 201.906 30.159 9.852 5.114 3.795 3.373 3.377
0.01 201.010 30.578 10.032 5.075 3.702 3.335 3.290
0.1 199.009 37.014 13.293 6.277 4.608 4.268 4.570

Table A5. Results with different rtar.

A.6. Reference Condition Adherence Metrics

We measure condition adherence in Section 4 via two condition adherence metrics. On CIFAR-10, we compute the average
cross-entropy of the logits predicted by a pretrained classifier1 on the generated images against the ground-truth conditioning
labels. On ImageNet, we compute the average cosine distance between the CLIP embeddings extracted from the generated
images versus the conditioning captions, using SigLip-2 [15]2. For reference, we compute these metrics on the validation set
using ground-truth images and present the results in Table A6.

B. Extended Plots

Figures A1 and A2 extend Figures 5 and 6 of the main paper to include all data points.

1https://github.com/chenyaofo/pytorch-cifar-models, commit d1c8e99b911da7d412979600c84d2a4fe3728473, ResNet56
2ViT-SO400M-16-SigLIP2-256
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Dataset CE (↓)

CIFAR-10 0.0005

Dataset CLIP (↑)

ImageNet 32×32 0.1119
ImageNet 256×256 0.1363

Table A6. Reference condition adherence metrics on ground-truth images.
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Figure A1. Changes in FID with respect to varying OT batch sizes b.
We plot mean±std over three runs and represent std with a shaded
region.
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Figure A2. Changes in FID with respect to varying target ratio rtar.
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region.

C. Data Coupling in 8 Gaussians→moons

Figure A3 extends Figure 1 with an additional row that shows coupling during training. Clearly, OT samples form a biased
distribution at training time in conditional generation as discussed. Since we cannot sample from this biased distribution at
test-time, we obtain a gap between training and testing. This gap degrades the performance of OT.

D. Implementation Details

D.1. Two-Dimensional Data

Data. Following the implementation of Tong et al. [14], we generate the “moons” data using the torchdyn library [12],
and the “8 Gaussians” using torchcfm [14].

Network. We employ a simple multi-layer perceptron (MLP) network for this dataset. Initially, the two-dimensional input (x
and y coordinates) and the flow timestep (a scalar uniformly sampled from [0, 1]) are projected into the hidden dimension using
individual linear layers. When an input condition is provided, it is similarly projected into the hidden dimension. Discrete
conditions are encoded as -1 or +1, while continuous conditions are represented by the x-coordinate of the target data point.
After projection, all input features are summed and processed through a network comprising three MLP modules. Each MLP
module consists of two linear layers, where the first layer uses an expansion ratio of 4, and is followed by a GELU activation
function [5]. We use a residual connection to incorporate the output of each MLP block. Finally, another linear layer projects
the features to two dimensions to produce the output velocity. The hidden dimension is set to 128.
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Figure A3. We visualize the flows learned by different algorithms using the 8gaussians→moons dataset. Below each plot, we show the
2-Wasserstein distance (lower is better; mean±std over 10 runs). Compared to Figure 1, we have added a first row illustrating the prior-data
coupling during training. Note that the OT coupled paths during training (first row) do cross. This is expected – the commonly referred to
“no-crossing” property of OT coupling refers to the uniqueness of the pair (x0, x1) given x and t – at the same timestep t, no two paths may
cross at x (see Proposition 3.4 in Tong et al. [14] and Theorem D.2 in Pooladian et al. [13]). Since we plot all timesteps simultaneously in
this figure, there are apparent crossings. However, the intersecting paths do not share the same timestep t at the point of intersection.

CIFAR-10 ImageNet-32

Channels 128 256
Depth 2 3
Channels multiple 1, 2, 2, 2 1, 2, 2, 2
Heads 4 4
Heads channels 64 64
Attention resolution 16 4
Dropout 0.0 0.0
Use scale shift norm True True
Batch size / GPU 128 128
GPUs 2 4
Effective batch size 256 512
Iterations 100k 300k
Learning rate 2.0e−4 1.0e−4
Learning rate scheduler Warmup then constant Warmup then linear decay
Warmup steps 5k 20k
OT batch size (per GPU, for C2OT) 640 6400

Table A7. Hyperparameter settings for training on CIFAR-10 and ImageNet-32.

Training. We train each network for 20,000 iterations with the Adam [7] optimizer, a learning rate of 3e-4 without weight
decay, and a “deep net” batch size of 256 for computing forward/backward passes/gradient updates. We use an OT batch size b
of 1024 and a target ratio rtar of 0.01.
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D.2. CIFAR-10
In CIFAR-10, we employ the UNet architecture used by Tong et al. [14]. We list our hyperparameters in Table A7, following
the format in [9, 13, 14]. To accelerate training, we use bf16. We use the Adam [7] optimizer with the following parameters:
β1 = 0.9, β2 = 0.95, weight decay=0.0, and ϵ = 1e−8. For learning rate scheduling, we linearly increase the learning rate
from 1.0e−8 to 2.0e−4 over 5,000 iterations and then keep the learning rate constant. The “use scale shift norm” denotes
employing adaptive layer normalization to incorporate the input condition, as implemented in [3]. To stabilize training, we clip
the gradient norm to 1.0. We report the results using an exponential moving average (EMA) model with a decay factor of
0.9999. For FID computation, we use the clean_fid library [11] in legacy_tensorflow mode following [14].

D.3. ImageNet-32
Data. We use face-blurred ImageNet-1K [2, 16] following [10], and apply the downsampling script from [1]. Images are
downsampled to 32××32 using the ‘box’ algorithm, and reference FID statistics are computed with respect to the downsampled
validation set images. For text input, we use the captions provided by [8].
Network and Training. We largely follow the training pipeline described in Appendix D.2. We use a larger network
following [13] and list our hyperparameters in Table A7. To encode text input, we use the openclip library [6] and the text
encoder of the “DFN5B-CLIP-ViT-H-14” checkpoint [4], a pretrained CLIP-like model. CLIP feature vectors are normalized
to unit norm before being used as input conditions. For learning rate scheduling, after the initial warmup phase, we linearly
decay the learning rate to 1.0e−8 over time.
Evaluation. As stated in the main paper, we use 49,997 images from the validation set to compute FID. This is because
the fine-grained nature of image captions might lead to overfitting, i.e., memorizing the training set. For CLIP score
computation, we evaluate the cosine similarity between the input caption and the generated image using SigLIP-2 [15], with
the ViT-SO400M-16-SigLIP2-256 checkpoint via the openclip library [6].

D.4. ImageNet-256
For this dataset, we use the open-source implementation of LightningDiT [17] and train the models under the ‘64 epochs’ setting
with minimal modifications to change the network from class-conditioned to caption-conditioned. In addition to integrating the
coupling algorithms (OT and C2OT, while the original LightningDiT [17] already employs FM), our modifications include:
1. Changing the input conditional mapping layer from an embedding layer (that takes a class label as input) to a linear layer

(that takes CLIP features as input).
2. Adjusting the classifier-free guidance (CFG) scale. We find that the model benefits from a higher CFG scale when using

caption conditioning. Specifically, we increase the CFG scale from 10.0 to 17.0, and adjust the CFG interval start parameter
from 0.11 to 0.10.
For data and evaluation, we follow the same setup as described in Appendix D.3.

E. Additional Generated Images

We present additional image generation results in this section. All showcased images are uncurated, meaning they were
sampled completely at random. For consistency and direct comparison, we used the same random seed for each generation
across different methods.
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E.1. CIFAR-10
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Figure A4. Uncurated generations in CIFAR-10, 10-per-class. We compare FM, OT, and C2OT with both 10-step Euler’s method and an
adaptive solver for test-time numerical integration.
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E.2. ImageNet-32
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Figure A5. Uncurated generations in ImageNet-32. We compare FM, OT, and C2OT with both 10-step Euler’s method and an adaptive
solver for test-time numerical integration.
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E.3. ImageNet-256
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Figure A6. Uncurated generations in ImageNet-256. We compare FM, OT, and C2OT with different amounts of sampling steps.
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Figure A7. Uncurated generations in ImageNet-256. We compare FM, OT, and C2OT with an adaptive solver for test-time numerical
integration.
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