
Supplementary material for Plug-in Feedback Self-adaptive Attention in CLIP
for Training-free Open-Vocabulary Segmentation

A. Summary
In this supplementary material, we present the following ad-
ditional content to complement the main paper:
• Additional qualitative comparisons on various datasets.
• We present more details motivation and additional obser-

vations.
• Sensitivity on similarity metric.
• Impact of different configuration of CLIP.
• Additional speed analysis.

B. Additional qualitative results
In Fig. S1, we provide additional qualitative comparisons
with ProxyCLIP on the Cityscapes dataset. By incorpo-
rating our self-adaptive framework, we successfully cor-
rect missegmented regions. Notably, for the same ob-
ject, certain regions are initially misclassified; however,
our feedback-adaptive method aggregates information from
similar patches in the output, enabling further refinement
and correction. In Fig. S2, we show expanded comparison
with MaskCLIP and SCLIP with the exmaples in Row 5-6
of Fig. 6.

In Fig. S5, we present additional results from the VOC21
dataset, along with attention maps corresponding to the
reference patch (indicated by the red box in the first col-
umn). The segmentation results of ProxyCLIP (third col-
umn) exhibit flaws, as certain regions within the main object
are incorrectly segmented. This issue arises because those
patches fail to attend correctly to the same object, as illus-
trated in their attention maps (second column). In contrast,
our feedback self-adaptive method successfully corrects the
segmentation (fifth column) across the entire object by at-
tending to more regions belonging to the same object.

C. Additional motivation and observation
Our proposed FSA aims to improve the spatial coherence
among similar patches using the feedback loop. The feed-
back loop is derived using self-predicted logits for each
patch. The concept is similar to knowledge distillation [2,
12], where the output logits of a stronger model is used as
a soft label to guide the current model to learn extended
knowledge, instead of the sparse labels from ground truth.

(a) Input (b) ProxyCLIP (c) +FSA (d) GT

Figure S1. Qualitative results on Cityscapes. By integrating
our feedback self-adaptive mechanism, we correct missegmented
patches by ProxyCLIP, ensuring consistent segmentation within
each object. We can clearly observe that our segmentation is more
consistent across whole objects.
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Figure S2. Examples of Row 5-6 in Fig.6 for MaskCLIP and
SCLIP.

More specifically, it is close to self-distillation [10, 11]
where both the teacher and student are the model itself. On
the other hand, our methodology is also closely related to
test-time adaptation, which normally adapt the model to-
wards one specific test data instance [7, 8] or specific do-
main [1, 9]. The process is normally self-supervised with-
out any additional manual labeling [5, 6].

In the main paper, we have illustrated the semantic co-
herence retention. To quantify subsequent degradation, we
introduce a new metric: using Attninit as reference, for
each patch i, we get its most attended patch j. After each
operation in Eq.2 (residuals, FFNs), we compute pairwise
token similarities and check whether j remains among the
top-10 similar patches to i. Fig. S3 illustrates this process
and the metric drops (ave of 8 datasets) sharply after resid-
uals in MaskCLIP, indicating noise injection [21]. In con-
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Similarity metric ViT-B/16 ViT-L/14 ViT-H/14

Cosine 43.2 43.3 45.4
KL divergence 43.3 43.6 45.8

Table S1. Sensitivity on similarity metric. KL divergence evalu-
ates entire distributions and emphasizes differences in probabilis-
tic outputs, making it ideal for capturing detailed semantic coher-
ence and supporting effective feedback adaptation.

trast, our FSA better preserves spatial coherence. Fig. S4
compares attention maps (Fig.2) after the proj: although
both methods reduce focus on the cat’s face, our improved
intermediate attention provides greater resistance to degra-
dation.
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Figure S3. Illustration and analysis for new metric.

Atn of Proxy After Proj. in Eq. 2 Atn of Proxy + FSA After Proj. in Eq. 2

Figure S4. Attention visualization of Fig.2 after Proj. in Eq.2.

D. Similarity metric
Table S1 compares cosine similarity and KL divergence for
computing logit similarity. KL divergence proves more ef-
fective due to its ability to assess full distributions and high-
light differences in probabilistic outputs, making it better
suited for capturing detailed semantic coherence and en-
abling effective feedback adaptation.

E. Impact of different configuration of CLIP
ProxyCLIP and ClearCLIP omit residual and FFN modules,
identified as sources of noisy segmentation [3, 4], thus bet-

ter preserving spatial consistency than MaskCLIP or SCLIP,
which retain them. As our method primarily enhances se-
mantic consistency, it yields larger improvements on base-
lines with weaker spatial coherence. As shown in Tab. S2,
FSA improves MaskCLIP under different configurations of
CLIP, though the margin is smaller in the latter.

Methods ViT-B/16 ViT-L/14 ViT-H/14

MaskCLIP 27.9 13.9 19.3
+FSA 35.8 (+7.9) 32.6 (+18.7) 33.4 (+14.1)

MaskCLIP (w/o FFN, Res) 29.5 29.7 29.8
+FSA 36.8 (+7.3) 34.1 (+4.4) 34.7 (+4.9)

Table S2. Improvement over MaskCLIP with different config-
urations. Average mIoU reported on 8 datasets.

F. Additional speed analysis
Following Clear/Mask/SCLIP, we modify only the last
layer, incurring a 4.3–11.7% overhead depending on layer
count (Tab. S3).

Methods B/16(12-layers) L/14(24-layers) H/14(32-layers)

Clear/+FSA 4.9/5.4 13.1/13.9 21.1/22.2
Mask/+FSA 5.1/5.7 13.4/14.1 21.9/22.9

SCLIP/+FSA 5.2/5.7 13.4/14.2 22.0/23.0

Table S3. Speed (ms) on V100 GPU with 224x224 input.
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