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6. Implementation Details

6.1. Identifying noun tokens

As mentioned in Section 3.3, we extract cross-attention
maps for all noun tokens related to an edit, which can be
inferred by comparing the source and target prompts. We
assume that the target prompt is a modified version of the
source prompt that either (1) expands on the source prompt
or (2) alters specific details within it. Such modifications
can appear in various forms, for example:
• a waterfall with a small boat floating near it.
• a girl wearing glasses sitting in front of a mirror.
• a bird on a roof.
• a cup of (“coffee”→ “matcha”).
We refer to the modified portion as the differing substring,
which represents the edit. To identify the differing sub-
string, we first remove the longest common suffix and prefix
from both prompts, then extract nouns from the remaining
target prompt using Part-of-Speech (POS) tags2. If the last
word of the substring is not (1) a noun, (2) an article, or (3)
a preposition, we expand the substring by appending addi-
tional words from the target prompt until a noun is included.
This step ensures that the extracted segment captures com-
plete noun phrases.

This simple rule-based approach relies on the accuracy
of the POS tagger and may not work for all prompt pairs.
However, we employ this algorithm to ensure a consistent
methodology for both qualitative and quantitative compar-
isons. In practice, the differing substring can be specified
by the user.

6.2. LUSD algorithm

The pseudocode of our LUSD described in Section 3 is
given in Algorithm 1 and 2. Our implementation uses
N = 300, η0 = 0.01, α = 0.1, λ = 0.02, lr = 2000,
and a reverse sigmoid schedule γ.

7. Study on Moving Average in Attention Mask

As discussed in Section 3.3, spatial regularization is intro-
duced to modulate SBP gradients, which may be averaged
out over multiple optimization steps (see Figure 4). By
estimating the editing region using attention features, our
method produces more localized masks than the naive SBP
gradients, even without using a moving average (see Fig-
ure 11). Nonetheless, we observe that attention masks with

2We use Natural Language Toolkit’s nltk.tag.pos tag and se-
lect tokens tagged as NN or NNS.

Algorithm 1: Image Editing with LUSD
Input: zsrc: latent code of input image

ysrc, ytgt: source and target prompts
lr, λ,N, η0: hyperparameters

Output: Edited image
1 z← zsrc

2 for k ← 1 to N do
3 η ← η0
4 t ∼ U(50, 950)
5 while True do
6 ϵ ∼ N (0, I)
7 zt ←

√
αtz+

√
1− αtϵ

8 ϵtgt, ϵsrc ← ϵϕ(zt, t, (y
tgt, ysrc))

9 ∇zLSBP ← ϵtgt − ϵsrc

10 if SD(∇zLSBP) ≥ η then
11 M̂k ←AttentionMask(ϵϕ,E, k, α)

// Algorithm 2

12 ∇zLSBP-reg ←
(1− λ)(M̂k ⊙∇zLSBP) + λ(z− zsrc)

13 ∇zLLUSD ← γ
∇zLSBP-reg

SD(∇zLSBP-reg)

14 z← z− lr · ∇zLLUSD
15 break
16 else
17 η ← 0.99η

18 return Decode(z)

a moving average consistently outperform those without it
across all metrics (see Table 5).
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Figure 11. Attention masks are more localized than SBP gradients.

8. Effects of Hyperparameters
This section discusses how hyperparameters influence
background preservation, gradient filtering, and detail edit-
ing. Our default configuration of the regularizer (λ), filter-
ing threshold (η0), and timestep range (tmin, tmax) aims to



Algorithm 2: AttentionMask
Input: ϵϕ: diffusion model

E: Set of target noun tokens
k: Current optimization step
α: Moving average parameter

Output: Attention-based mask M̂k

1 for l← 1 to L do
2 Al,t

S ←get self(ϵϕ, l)

3 Al,t,e
C ←get cross(ϵϕ, l, e), ∀e ∈ E

4 At
S ← 1

L

∑L
l=1 A

l,t
S

5 At,e
C ←

1
L

∑L
l=1 A

l,t,e
C ,∀e ∈ E

6 Ât
C ← At

S ·
(

1
|E|

∑
e∈E At,e

C

)
7 M← Ât

C−min(Ât
C)

max(Ât
C)−min(Ât

C)

8 if k = 1 then
9 Mk ←M

10 else
11 Mk ← (1− α)Mk−1 + αM

12 β ← k/N

13 M̂k ← βMk + (1− β)1

14 return M̂k

Moving average CLIP-T ↑ CLIP-AUC ↑ L1∗ ↓ CLIP-I∗ ↑
Without 0.286 0.071 0.0148 0.1921
With (Ours) 0.287 0.074 0.0146 0.1923

Table 5. Applying moving average when computing attention
mask yields better results on MagicBrush across all metrics.

ensure the right extent of image modification, robustness
against bad gradients from uncommon concepts, and the
ability to alter both low- and high-frequency image features.

Regularizer (λ). The regularizer, as used in Equation 3, is
crucial for preserving the background during edits. With-
out the regularizer (λ = 0), the method modifies the entire
image to match the prompt. Conversely, increasing λ limits
the extent of the edited region. An overly high λ can prema-
turely eliminate essential visual cues before larger objects
form during the optimization process and thus worsen the
quality of the results. Figure 12 illustrates how varying λ
affects outcomes.

Filtering threshold (η0). The filtering threshold η0 helps
prevent edit reversion caused by applying bad gradients
(Section 3.4). Its necessity varies based on input concepts
due to the differing prior knowledge encoded in Stable Dif-
fusion [37]. For instance, less recognizable concepts like
“Marengo” (the war horse of Napoleon) has higher chances
of encountering bad gradients compared to more common
ones like “Eevee” (the Pokémon), necessitating a higher η0.
The right value of η0 also depends on the input image and

the composition of the input prompt. For instance, a prompt
such as “Game of Thrones dragon” would already yield a
high editing success rate without gradient filtering (η0 = 0)
because it includes the common term “dragon.” Effects of
various η0 values are shown in Figure 13. Lastly, the value
of η0 affects our method’s speed because a higher η0 re-
quires more optimization time as more gradients are filtered.

Timestep range (tmin, tmax). The default configuration
samples diffusion timesteps t ∼ U(tmin, tmax), with tmin =
50 and tmax = 950. Lower timesteps allow the method to
better resolve high-frequency details such as texture, which
is essential for tasks like transforming “wildflower” into
“roses” (Figure 14). Higher timesteps, by contrast, focus
on low-frequency details like color, which is crucial for ed-
its such as altering “coffee” to “matcha” (Figure 15).

Input
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+ graffiti

+ camel

+ seagulls

𝜆 = 0 𝜆 = 0.01 𝜆 = 0.02 𝜆 = 0.03 𝜆 = 0.04

Figure 12. Regularizer λ is necessary for background preserva-
tion; however, a higher λ may restrict the size of the edited region.
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+ eevee

+ game of 
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+ marengo

Figure 13. Higher filtering threshold (η0) mitigates the bad gra-
dient issue with less known concepts such as “Marengo” (the war
horse of Napoleon), albeit requiring more optimization time.
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Figure 14. Low timestep range’s lower bound (tmin) is necessary
for editing high-frequency details, such as the texture of “roses.”
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Figure 15. High timestep range’s upper bound (tmax) is necessary
for editing low-frequency details, such as the color of “matcha.”

9. Additional Experimental Details

9.1. MagicBrush classification
In Table 3 of the main paper, we report scores for examples
from the MagicBrush test set [49] involving object inser-
tion. To identify these examples, we first compile a list of
keywords for each editing task. For object insertion, we use
add, put, and let there be. For other tasks, we use remove,
erase, delete, replace, swap, make, change, turn, smaller,
bigger, larger, smile, cry, and look. Instructions contain-
ing these keywords are automatically categorized accord-
ingly, and the rest of the instructions, approximately 35%,
are classified manually by the authors.

9.2. Human evaluation
As mentioned in Section 4.1, the user study evaluated 200
samples from the MagicBrush test set. Of these, 100 were
randomly selected from object insertion tasks and the rest
from other tasks. We compared our method against five
state-of-the-art competitors in a one-on-one setup, which
results in 200× 5 = 1000 sample-competitor pairs.

Each worker was presented with multiple sample-
competitor pairs. For each pair, they saw the input image,
the edit instruction, the target caption, and the outputs of
our method and the competitor. The worker was not in-
formed of the task type the sample belongs to, and the out-
puts were presented side-by-side in a randomized order to
prevent positional bias. They were asked to choose between
our method and the competitor as the better method based
on 4 criteria: (1) background preservation, (2) prompt fi-
delity, (3) quality of edited elements, and (4) overall prefer-
ence. The user interface and detailed instructions are shown
in Figure 16.

A total of 350 unique workers participated via Amazon
Mechanical Turk3. We designed the study so that five dif-
ferent workers evaluated each sample-competitor pair. For
each sample, the better method in a one-on-one compar-
ison was determined by majority vote (i.e., at least 3 out
of 5 workers selected it). As discussed in Section 4.1, our
method outperforms all state-of-the-art approaches when
considering all tasks.

Table 6 presents the scores separately for object inser-
tion (Add) and other tasks (Other). Our method achieves

3https://www.mturk.com/

higher overall preference scores in both task categories, ex-
cept when compared to CDS in the “Other” category. Upon
examination, we found that this outcome stems from exam-
ples involving complex edits where both methods struggle
to match the target prompt, such as those illustrated in Fig-
ure 17. In such cases, our method attempts modifications,
sometimes introducing slight visual artifacts or corrupted
elements. In contrast, CDS makes almost no changes to the
input image. While this conservative behavior in CDS does
not adhere to the target prompt, it avoids introducing errors,
leading to higher scores in these specific cases.

9.3. Inherent biases in commonly used background
preservation metrics

Metrics commonly used to assess background preservation
in previous works [39, 49] are L1, CLIP-I, and DINO, all
computed on the MagicBrush test set [49]. L1 is defined
as the L1-norm between the edited and reference images,
while CLIP-I measures the cosine similarity between their
CLIP embeddings. Similarly, DINO computes the cosine
similarity between their DINO [10] embeddings, making it
highly correlated with CLIP-I.

In MagicBrush [49], the reference, or “ground-truth” im-
ages, were created by workers on Amazon Mechanical Turk
with a mask-based inpainting model DALL-E 24. While
this process yields high-quality edited images verified by
humans, each input has only one “correct” ground-truth im-
age. As a result, the metrics may penalize good results
where changes are made in a perfectly valid location but
not in the single ground-truth location specified by workers
during dataset creation.

We illustrate this on the MagicBrush test set. Specif-
ically, we compute pixel-wise differences between the in-
put and ground-truth reference image to infer a ground-truth
edit region B1. We then use Paint-by-Example [47] to in-
sert same-sized objects (sourced from Unsplash) into both
B1 and other plausible regions B2. As shown in Table 7,
these metrics disfavor editing made in B2.

Moreover, these metrics can produce misleading rank-
ings by favoring unchanged outputs over valid edits that
deviate from the ground truth (see Table 8). Additionally,
as DINO is trained via self-supervised training to capture
differences between objects of the same class, the DINO
metric may penalize valid edits that produce the correct ob-
ject but with an appearance different from the one in the
ground-truth image.

For these reasons, we exclude these metrics from Table
2, propose four new metrics (Section 4.2) and assess visual
quality with a user study (Section 4.1).

4https://openai.com/index/dall-e-2/

https://openai.com/index/dall-e-2/


Figure 16. User study interface.

Method Background Prompt Quality Overall
Add Other Add Other Add Other Add Other

InstructPix2Pix [6] 30.0% 37.0% 39.0% 41.0% 35.0% 38.0% 36.0% 36.0%
HIVE [51] 42.0% 52.0% 34.0% 47.0% 42.0% 48.0% 34.0% 44.0%
LEDITS++ [5] 31.0% 40.0% 27.0% 39.0% 27.0% 47.0% 29.0% 41.0%
DDS [16] 39.0% 48.0% 31.0% 43.0% 34.0% 42.0% 35.0% 42.0%
CDS [30] 28.0% 61.0% 25.0% 55.0% 31.0% 55.0% 29.0% 55.0%

Table 6. Percentage of times users preferred other methods over ours in 1-on-1 comparisons. We present the scores separately for samples
involving object insertion (Add) and other tasks (Other). Please refer to Section 4.1.

Locations L1 ↓ CLIP-I ↑ DINO ↑
Same (B1) 0.048 0.911 0.876
Different (B2) 0.057 0.899 0.839
p-value 2.33e-9 1.88e-2 1.28e-3

Table 7. Editing the same region as the reference images yields
statistically better scores (N = 70). We restrict our test to cases
where the ground-truth region B1 is sufficiently small, allowing
us to select a non-overlapping region of the same size B2 for in-
painting using Paint-by-Example.

10. Additional Qualitative Results

10.1. Benchmark dataset

This section provides qualitative results for the experiment
on MagicBrush test set [49] in Section 4 of the main pa-
per. We show editing results from our LUSD method along-
side other state-of-the-art approaches in Figures 24 and 25.
While our method may occasionally make incorrect edits
(e.g., the bottom two examples in Figure 24) due to the
inherently limited language understanding of Stable Diffu-
sion, it generally offers a good balance between prompt fi-
delity and background preservation.

Additionally, Figure 19 compares the performance of our



Method L1 ↓ CLIP-I ↑ DINO ↑

Do Nothing 0.037 0.943 0.917
InstructPix2Pix [6] 0.147 0.782 0.607
HIVE [51] 0.090 0.893 0.824
LEDITS++ [5] 0.097 0.864 0.775
DDS [16] 0.066 0.920 0.886
CDS [30] 0.061 0.931 0.902
SBP [26] 0.095 0.825 0.752
Ours 0.063 0.900 0.853

Table 8. The best and second-best scores are color-coded. We
observe that the commonly used L1, CLIP-I, and DINO metrics
for this task are biased toward unchanged results, with a method
that does nothing to the input (Do Nothing) ranking first across
the board. As a result, comparisons based on these scores can be
misleading. We discuss this limitation in Section 9.3 and propose
less biased evaluation in Section 4.

OursInput CDS (win)

Change the hats 

into chef hats

Let the man have 

crew cut hair

Make the cake for 

a 4th birthday 

instead of 30th

Make the cat stand

Figure 17. For complex edits, both CDS and our method fail to
match the target prompt. However, CDS typically returns almost
unchanged results, whereas our method may introduce artifacts.

full method against its ablated versions. Excluding spatial
regularization results in entirely new images. Not annealing
normalized gradients magnitude via γ produces visual arti-
facts due to unstable optimization. Without gradient filter-
ing and normalization, our method often struggles to insert
objects correctly or produces incomplete additions.

10.2. In-the-wild images
As images in MagicBrush [49] are curated from MS COCO
dataset [25] only, we present additional qualitative results
for diverse images under CC4.0 license from Unsplash5 and

5https://unsplash.com/

other websites, using multiple random seeds in Figures 26
to 28. We input source prompts and target prompts directly
into LEDITS++ [5], DDS [16], CDS [30], and our method.
For InstructPix2Pix [7] and HIVE [51], we use edit instruc-
tions generated by ChatGPT, as these models are trained on
edit instructions. To generate these inputs, given a source
prompt and a target prompt from MagicBrush, we ask chat-
gpt to generate an edit instruction, prepping it with a short
prompt that contains a couple of examples of desired text
transformation. Note that this approach is similar to the
procedure used in MagicBrush, where a global description
(i.e., a target prompt) is inferred from a source prompt and
an edit instruction using ChatGPT.

Unlike other methods, which require adjusting hyper-
parameters for each image to achieve good editing results,
LUSD achieves competitive performance—or even better in
challenging cases involving object insertion—using a single
configuration. It also works across diverse scenarios, such
as adding a Google logo to a t-shirt, adding a party hat to
a cat, and replacing meatballs with chrome balls. Refer to
Appendix 12 for hyperparameter tuning grids.

10.3. Comparison with object insertion works

Our work focuses on stabilizing score distillation, which en-
ables general image editing using diffusion priors. This dif-
fers from object insertion techniques that specifically tackle
object insertion with supervised fine-tuning on datasets
such as Paint-by-Inpaint [45] and Diffree [52]. While super-
vised approaches generally perform better for common ob-
jects (e.g., curtain, apple, turtle), they can produce qualita-
tively worse results for objects outside their training classes
(e.g., dragon, Pikachu, Minion), as shown in Figure 22.
Interestingly, even fine-tuned models exhibit the minimal-
effort issue (Section 11), albeit to a lesser extent (e.g., sun-
glasses on a statue, candle). Bridging the gap between these
two approaches remains an interesting research direction.

10.4. Comparison with rectified flow models

In Section 4, we limit our comparison to methods applicable
to Stable Diffusion [37] and those fine-tuned on it to ensure
a fair evaluation, as models vary in their prior knowledge
and language understanding. Nonetheless, we also include
comparisons with RF-Inversion [38] and RF-Edit [42], both
zero-shot methods designed for rectified flow models. For
implementation, we use FLUX.1-dev 6 with Diffusers’ im-
plementation for RF-Inversion and the official implementa-
tion for RF-Edit. Following the paper’s recommendation,
we set the inversion prompt in RF-Inversion to an empty
string and limit the number of feature-sharing steps in RF-
edit to 5, with other hyperparameters set to default values.

6https : / / huggingface . co / black - forest - labs /
FLUX.1-dev

https://huggingface.co/black-forest-labs/FLUX.1-dev
https://huggingface.co/black-forest-labs/FLUX.1-dev


Note that the number of parameters in Stable Diffusion and
FLUX.1-dev are 1.3 billion and 12 billion, respectively.

As shown in Table 9, our method outperforms RF-Edit
and is competitive with RF-Inversion in CLIP-T on the
MagicBrush [49] test set. However, RF-Inversion outper-
forms our method in CLIP-AUC. This improvement can be
due to RF-Inversion and RF-Edit’s ability to handle more
complex edits (making a cat meowing, altering texts, and
opening a pizza box) by leveraging the richer prior and
better language understanding of the larger FLUX.1-dev
(Figure 23). Nonetheless, these methods still struggle with
background preservation, which is the central challenge ad-
dressed by our work.

Method CLIP-T ↑ CLIP-AUC ↑ L1∗ ↓ CLIP-I∗ ↑

RF-Inversion 0.287 0.096 0.026 0.171
RF-Edit 0.279 0.068 0.016 0.182
Ours 0.287 0.074 0.015 0.192

Table 9. Comparison on MagicBrush between rectified-flow-based
methods and our method.

11. Additional Failure Cases
Our technique successfully improves the success rate of
SDS-based image editing, particularly for object insertion.
However, it remains susceptible to minimal-effort regions,
where the visual cues needed for object formation are al-
ready present, leading our method to only add objects there.
As shown in Figure 18, these cues can manifest as inten-
sity (e.g., a candle), color (e.g., bread), or shape (e.g., a ship
or sunglasses). We observed that such regions are associ-
ated with unusually high values in the cross-attention map
Al,t,e

C , averaged across layers l, timesteps t, and target noun
tokens e (see Section 3.3 and Appendix 6.1). Since the mag-
nitude of averaged gradients correlates with the spatial lo-
cation of these bright spots, SDS-based methods that derive
gradient updates directly from model predictions are inher-
ently vulnerable to this issue. To address this spatial bias,
a potential solution might be reweighting attention features.
This problem is an interesting area for future work.

12. More Comparison with SOTA Image Edit-
ing Methods

In Figures 1, 2 and 10 in the main paper, along with Figures
26 to 28 in Appendix 10.2, we present qualitative compar-
ison between our method and various SOTA approaches:
CDS [30], DDS [16], LEDITS++ [5], HIVE [51], and In-
structPix2Pix [7]. In this section, we provide the hyperpa-
rameter tuning grids for all methods in Figures 29 to 42. For
each method, we tune the following hyperparameters:
1. InstructPix2Pix:

• text guidance scale ωT ∈ {3, 7.5, 10, 15}

• image guidance scale ωI ∈ {0.8, 1.0, 1.2, 1.5}
2. HIVE:

• text guidance scale ωT ∈ {3, 7.5, 10, 15}
• image guidance scale ωI ∈ {1.0, 1.5, 1.75, 2.0}

3. DDS and CDS:
• learning rate lr ∈ {0.05, 0.10, 0.25, 0.50}
• guidance scale ω ∈ {3, 7.5, 15, 30}

4. LEDITS++:
• skip time step skip t ∈ {0.0, 0.1, 0.2, 0.4}
• masking threshold λLEDIT ∈ {0.6, 0.75, 0.8}
• guidance scale se ∈ {10, 15}

Unlisted hyperparameters are set to their default values.

13. More Comparison with DDS and CDS
In Figure 2 in Section 2, we provide qualitative compari-
son for object insertion between our approach and existing
SDS-based methods: CDS [30] and DDS [16]. We present
20 additional object insertion results in Figures 21. For
DDS and CDS, we include results from both their default
configurations and a configuration optimized for better ob-
ject insertion, manually selected based on hyperparameter
tuning detailed in Appendix 12. This object configuration
employs a higher learning rate (0.25 instead of 0.1) and a
higher classifier-free guidance value (15 instead of 7.5).

As shown in Figures 21, our method and other SDS-
based methods show competitive performance in common
scenarios (e.g., adding sunglasses or a hat to a person).
However, the default configurations of existing approaches
fail to add objects in more challenging cases, such as in-
serting a horse into a chateau or putting a necktie on a cat.
While the object configuration alleviates this issue to some
extent, it comes at the cost of poorer background preser-
vation, particularly in earlier common scenarios. Addition-
ally, this configuration still fails in certain instances, such as
adding a rabbit to a walkway. In contrast, our method pro-
duces good results in most cases, albeit with some minor
issues with minimal-effort regions (see Appendix 11).

14. Extension to Other Score Distillation
In this work, we introduce attention-based spatial regular-
ization, along with gradient filtering and normalization, to
enhance prompt fidelity while preserving the background in
SBP [26] for image editing. Nonetheless, our preliminary
study suggests that these components can also effectively
improve other distillation algorithms, such as DDS [16], as
illustrated in Figure 20. This can be done by simply modi-
fying the noise prediction step (line 8-9 in Algorithm 1) to
reflect the DDS loss:

∇zLDDS = ϵϕ(zt, y
tgt, t)− ϵϕ(z

src
t , ysrc, t), (6)

where zsrc
t denotes a noisy latent code of the original image.
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Figure 18. Failure mode: Our method and other SDS-based methods (e.g., DDS [16]) favor minimal-effort regions, where the visual cues
needed for object formation are already present. This bias may lead to unnatural object placements or limited diversity in image edits.
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Figure 19. Qualitative results on MagicBrush dataset [49] between our full method and its ablated versions.
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Figure 20. Our regularizer and gradient filtering/normalization help improve DDS’s success rate and its background preservation in the
default configuration.
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Figure 21. Qualitative results of SDS-based methods for object addition. For CDS [30] and DDS [16], we present results from both
the default configuration and an alternative configuration (object config) that encourages object appearance but compromises background
preservation. Successful cases are highlighted in green, while failed cases are highlighted in red. Our method has a higher success rate.
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Inpaint Input Ours Diffree

Paint-by-
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a chinese lion wearing a sunglasses a cat wearing a crown
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a person riding a scooter and a turtle walking at the walkway a dragon on a hill

“” → a masterpiece drawing of pikachu a chair and a minion

an old statue wearing a sunglasses a cake with a candle

Figure 22. Comparison of our method with other supervised object insertion methods. While task-specific approaches perform better on
common objects, they struggle with objects outside their training classes.
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Figure 23. Comparison of our method with zero-shot rectified-flow-based approaches. For simple edits, all methods can follow the text
prompt, but our approach better preserves background elements, such as the horse’s hat, people’s poses, the graffiti on the car, and the
distribution of fruits on the plant. However, RF-Inversion and RF-Edit can handle more complex edits by leveraging the richer prior and
better language understanding of the larger base model (FLUX.1-dev).
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Figure 24. Qualitative results on MagicBrush dataset [49] between our method and other state-of-the-art methods
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Figure 25. Qualitative results on MagicBrush dataset [49] between our method and other state-of-the-art methods
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Prompt: musicians playing instruments inside a room with a lamp

Figure 26. Qualitative results on various in-the-wild editing tasks. We compare the best results (prioritizing object appearance) from state-
of-the-art methods, optimized through hyperparameter tuning (see Appendix 12), with our results all generated using a single configuration.
For each input image, we show results from 3 different random seeds.
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Prompt: an ocean with a clear blue sky and a full moon and a bird

Figure 27. Qualitative results on various in-the-wild editing tasks. We compare the best results (prioritizing object appearance) from state-
of-the-art methods, optimized through hyperparameter tuning (see Appendix 12), with our results all generated using a single configuration.
For each input image, we show results from 3 different random seeds.



Prompt: the thinker

O
u

rs

In
p

u
t

D
D

S
H

IV
E

L
E

D
IT

S
+

+
In

s
tr

u
c
tP

ix
2
P

ix
C

D
S

O
u

rs

In
p

u
t

D
D

S
H

IV
E

L
E

D
IT

S
+

+
In

s
tr

u
c
tP

ix
2
P

ix
C

D
S

Prompt: (“meatballs” → “chrome balls”)

O
u

rs

In
p

u
t

D
D

S
H

IV
E

L
E

D
IT

S
+

+
In

s
tr

u
c
tP

ix
2
P

ix
C

D
S

Prompt: a musician with blonde hair

Figure 28. Qualitative results on various in-the-wild editing tasks. We compare the best results (prioritizing object appearance) from state-
of-the-art methods, optimized through hyperparameter tuning (see Appendix 12), with our results all generated using a single configuration.
For each input image, we show results from 3 different random seeds.
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Figure 29. Hypertuning grids on various in-the-wild editing tasks. We compare the best results (prioritizing object appearance) from
state-of-the-art methods, optimized through hyperparameter tuning (highlighted by red boxes), with our results all generated using a single
configuration. When several configurations perform equally, we choose the one that best preserves the background.
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Figure 30. Hypertuning grids on various in-the-wild editing tasks. We compare the best results (prioritizing object appearance) from
state-of-the-art methods, optimized through hyperparameter tuning (highlighted by red boxes), with our results all generated using a single
configuration. When several configurations perform equally, we choose the one that best preserves the background.



lr  = 0.05 lr  = 0.1 lr  = 0.25 lr  = 0.5 lr  = 0.05 lr  = 0.1 lr  = 0.25 lr  = 0.5

𝜔
=

3
𝜔

=
7

.5
𝜔

=
1

5
𝜔

=
3
0

𝜔
=

3
𝜔

=
7

.5
𝜔

=
1

5
𝜔

=
3
0

𝜔
𝑇

=
3

𝜔
𝑇

=
7

.5
𝜔

𝑇
=

1
0

𝜔
𝑇

=
3

𝜔
𝑇

=
7

.5
𝜔

𝑇
=

1
0

CDS grid DDS grid HIVE grid InstructPix2Pix grid

𝜔𝐼 = 1.0 𝜔𝐼 = 1.5 𝜔𝐼 = 1.75 𝜔𝐼 = 2.0 𝜔𝐼 = 0.8 𝜔𝐼 = 1.0 𝜔𝐼 = 1.2 𝜔𝐼 = 1.5

Input Ours CDS DDS HIVE InstructPix2Pix LEDITS++

LEDITS++ grid

𝜆𝐿𝐸𝐷𝐼𝑇 = 0.6 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.75 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.8

𝑠 𝑒
=

1
0

𝑠 𝑒
=

1
5

𝜆𝐿𝐸𝐷𝐼𝑇 = 0.6 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.75 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.8 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.6 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.75 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.8 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.6 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.75 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.8

𝑠𝑘𝑖𝑝 𝑡 = 0𝑡 𝑠𝑘𝑖𝑝 𝑡 = 0.1𝑡 𝑠𝑘𝑖𝑝 𝑡 = 0.2𝑡 𝑠𝑘𝑖𝑝 𝑡 = 0.4𝑡

𝜔
𝑇

=
1

5

𝜔
𝑇

=
1

5

(a) Prompt: a chair and a minion

lr  = 0.05 lr  = 0.1 lr  = 0.25 lr  = 0.5 lr  = 0.05 lr  = 0.1 lr  = 0.25 lr  = 0.5

𝜔
=

3
𝜔

=
7

.5
𝜔

=
1

5
𝜔

=
3
0

𝜔
=

3
𝜔

=
7

.5
𝜔

=
1

5
𝜔

=
3
0

𝜔
𝑇

=
3

𝜔
𝑇

=
7

.5
𝜔

𝑇
=

1
0

𝜔
𝑇

=
3

𝜔
𝑇

=
7

.5
𝜔

𝑇
=

1
0

CDS grid DDS grid HIVE grid InstructPix2Pix grid

𝜔𝐼 = 1.0 𝜔𝐼 = 1.5 𝜔𝐼 = 1.75 𝜔𝐼 = 2.0 𝜔𝐼 = 0.8 𝜔𝐼 = 1.0 𝜔𝐼 = 1.2 𝜔𝐼 = 1.5

Input Ours CDS DDS HIVE InstructPix2Pix LEDITS++

LEDITS++ grid

𝜆𝐿𝐸𝐷𝐼𝑇 = 0.6 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.75 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.8

𝑠 𝑒
=

1
0

𝑠 𝑒
=

1
5

𝜆𝐿𝐸𝐷𝐼𝑇 = 0.6 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.75 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.8 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.6 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.75 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.8 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.6 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.75 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.8

𝑠𝑘𝑖𝑝 𝑡 = 0𝑡 𝑠𝑘𝑖𝑝 𝑡 = 0.1𝑡 𝑠𝑘𝑖𝑝 𝑡 = 0.2𝑡 𝑠𝑘𝑖𝑝 𝑡 = 0.4𝑡

𝜔
𝑇

=
1

5

𝜔
𝑇

=
1

5

(b) Prompt: a man surfing and a sun

Figure 31. Hypertuning grids on various in-the-wild editing tasks. We compare the best results (prioritizing object appearance) from
state-of-the-art methods, optimized through hyperparameter tuning (highlighted by red boxes), with our results all generated using a single
configuration. When several configurations perform equally, we choose the one that best preserves the background.
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(b) Prompt: a painting of a dog wearing a blindfold over its eyes

Figure 32. Hypertuning grids on various in-the-wild editing tasks. We compare the best results (prioritizing object appearance) from
state-of-the-art methods, optimized through hyperparameter tuning (highlighted by red boxes), with our results all generated using a single
configuration. When several configurations perform equally, we choose the one that best preserves the background.
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(b) Prompt: a siberian husky wearing stylish sunglasses

Figure 33. Hypertuning grids on various in-the-wild editing tasks. We compare the best results (prioritizing object appearance) from
state-of-the-art methods, optimized through hyperparameter tuning (highlighted by red boxes), with our results all generated using a single
configuration. When several configurations perform equally, we choose the one that best preserves the background.
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lr  = 0.05 lr  = 0.1 lr  = 0.25 lr  = 0.5 lr  = 0.05 lr  = 0.1 lr  = 0.25 lr  = 0.5

𝜔
=

3
𝜔

=
7

.5
𝜔

=
1

5
𝜔

=
3
0

𝜔
=

3
𝜔

=
7

.5
𝜔

=
1

5
𝜔

=
3
0

𝜔
𝑇

=
3

𝜔
𝑇

=
7

.5
𝜔

𝑇
=

1
0

𝜔
𝑇

=
3

𝜔
𝑇

=
7

.5
𝜔

𝑇
=

1
0

CDS grid DDS grid HIVE grid InstructPix2Pix grid

𝜔𝐼 = 1.0 𝜔𝐼 = 1.5 𝜔𝐼 = 1.75 𝜔𝐼 = 2.0 𝜔𝐼 = 0.8 𝜔𝐼 = 1.0 𝜔𝐼 = 1.2 𝜔𝐼 = 1.5

Input Ours CDS DDS HIVE InstructPix2Pix LEDITS++

LEDITS++ grid

𝜆𝐿𝐸𝐷𝐼𝑇 = 0.6 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.75 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.8

𝑠 𝑒
=

1
0

𝑠 𝑒
=

1
5

𝜆𝐿𝐸𝐷𝐼𝑇 = 0.6 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.75 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.8 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.6 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.75 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.8 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.6 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.75 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.8

𝑠𝑘𝑖𝑝 𝑡 = 0𝑡 𝑠𝑘𝑖𝑝 𝑡 = 0.1𝑡 𝑠𝑘𝑖𝑝 𝑡 = 0.2𝑡 𝑠𝑘𝑖𝑝 𝑡 = 0.4𝑡

𝜔
𝑇

=
1

5

𝜔
𝑇

=
1

5

(b) Prompt: a glass of lemon tea with a straw

Figure 34. Hypertuning grids on various in-the-wild editing tasks. We compare the best results (prioritizing object appearance) from
state-of-the-art methods, optimized through hyperparameter tuning (highlighted by red boxes), with our results all generated using a single
configuration. When several configurations perform equally, we choose the one that best preserves the background.



lr  = 0.05 lr  = 0.1 lr  = 0.25 lr  = 0.5 lr  = 0.05 lr  = 0.1 lr  = 0.25 lr  = 0.5

𝜔
=

3
𝜔

=
7

.5
𝜔

=
1

5
𝜔

=
3
0

𝜔
=

3
𝜔

=
7

.5
𝜔

=
1

5
𝜔

=
3
0

𝜔
𝑇

=
3

𝜔
𝑇

=
7

.5
𝜔

𝑇
=

1
0

𝜔
𝑇

=
3

𝜔
𝑇

=
7

.5
𝜔

𝑇
=

1
0

CDS grid DDS grid HIVE grid InstructPix2Pix grid

𝜔𝐼 = 1.0 𝜔𝐼 = 1.5 𝜔𝐼 = 1.75 𝜔𝐼 = 2.0 𝜔𝐼 = 0.8 𝜔𝐼 = 1.0 𝜔𝐼 = 1.2 𝜔𝐼 = 1.5

Input Ours CDS DDS HIVE InstructPix2Pix LEDITS++

LEDITS++ grid

𝜆𝐿𝐸𝐷𝐼𝑇 = 0.6 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.75 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.8

𝑠 𝑒
=

1
0

𝑠 𝑒
=

1
5

𝜆𝐿𝐸𝐷𝐼𝑇 = 0.6 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.75 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.8 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.6 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.75 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.8 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.6 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.75 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.8

𝑠𝑘𝑖𝑝 𝑡 = 0𝑡 𝑠𝑘𝑖𝑝 𝑡 = 0.1𝑡 𝑠𝑘𝑖𝑝 𝑡 = 0.2𝑡 𝑠𝑘𝑖𝑝 𝑡 = 0.4𝑡

𝜔
𝑇

=
1

5

𝜔
𝑇

=
1

5

(a) Prompt: a snowman with a scarf

lr  = 0.05 lr  = 0.1 lr  = 0.25 lr  = 0.5 lr  = 0.05 lr  = 0.1 lr  = 0.25 lr  = 0.5

𝜔
=

3
𝜔

=
7

.5
𝜔

=
1

5
𝜔

=
3
0

𝜔
=

3
𝜔

=
7

.5
𝜔

=
1

5
𝜔

=
3
0

𝜔
𝑇

=
3

𝜔
𝑇

=
7

.5
𝜔

𝑇
=

1
0

𝜔
𝑇

=
3

𝜔
𝑇

=
7

.5
𝜔

𝑇
=

1
0

CDS grid DDS grid HIVE grid InstructPix2Pix grid

𝜔𝐼 = 1.0 𝜔𝐼 = 1.5 𝜔𝐼 = 1.75 𝜔𝐼 = 2.0 𝜔𝐼 = 0.8 𝜔𝐼 = 1.0 𝜔𝐼 = 1.2 𝜔𝐼 = 1.5

Input Ours CDS DDS HIVE InstructPix2Pix LEDITS++

LEDITS++ grid

𝜆𝐿𝐸𝐷𝐼𝑇 = 0.6 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.75 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.8

𝑠 𝑒
=

1
0

𝑠 𝑒
=

1
5

𝜆𝐿𝐸𝐷𝐼𝑇 = 0.6 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.75 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.8 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.6 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.75 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.8 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.6 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.75 𝜆𝐿𝐸𝐷𝐼𝑇 = 0.8

𝑠𝑘𝑖𝑝 𝑡 = 0𝑡 𝑠𝑘𝑖𝑝 𝑡 = 0.1𝑡 𝑠𝑘𝑖𝑝 𝑡 = 0.2𝑡 𝑠𝑘𝑖𝑝 𝑡 = 0.4𝑡

𝜔
𝑇

=
1

5

𝜔
𝑇

=
1

5

(b) Prompt: two surfers carrying bright blue boards wade into the ocean and a kite in the sky

Figure 35. Hypertuning grids on various in-the-wild editing tasks. We compare the best results (prioritizing object appearance) from
state-of-the-art methods, optimized through hyperparameter tuning (highlighted by red boxes), with our results all generated using a single
configuration. When several configurations perform equally, we choose the one that best preserves the background.
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(b) Prompt: a lake of lava

Figure 36. Hypertuning grids on various in-the-wild editing tasks. We compare the best results (prioritizing object appearance) from
state-of-the-art methods, optimized through hyperparameter tuning (highlighted by red boxes), with our results all generated using a single
configuration. When several configurations perform equally, we choose the one that best preserves the background.
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(b) Prompt: a cat with blue eyes

Figure 37. Hypertuning grids on various in-the-wild editing tasks. We compare the best results (prioritizing object appearance) from
state-of-the-art methods, optimized through hyperparameter tuning (highlighted by red boxes), with our results all generated using a single
configuration. When several configurations perform equally, we choose the one that best preserves the background.
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(b) Prompt: a desert with a camel

Figure 38. Hypertuning grids on various in-the-wild editing tasks. We compare the best results (prioritizing object appearance) from
state-of-the-art methods, optimized through hyperparameter tuning (highlighted by red boxes), with our results all generated using a single
configuration. When several configurations perform equally, we choose the one that best preserves the background.
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(b) Prompt: a cat wearing a party hat

Figure 39. Hypertuning grids on various in-the-wild editing tasks. We compare the best results (prioritizing object appearance) from
state-of-the-art methods, optimized through hyperparameter tuning (highlighted by red boxes), with our results all generated using a single
configuration. When several configurations perform equally, we choose the one that best preserves the background.
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(b) Prompt: an ocean with a clear blue sky and a full moon and a bird

Figure 40. Hypertuning grids on various in-the-wild editing tasks. We compare the best results (prioritizing object appearance) from
state-of-the-art methods, optimized through hyperparameter tuning (highlighted by red boxes), with our results all generated using a single
configuration. When several configurations perform equally, we choose the one that best preserves the background.
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(b) Prompt: a musician with blonde hair

Figure 41. Hypertuning grids on various in-the-wild editing tasks. We compare the best results (prioritizing object appearance) from
state-of-the-art methods, optimized through hyperparameter tuning (highlighted by red boxes), with our results all generated using a single
configuration. When several configurations perform equally, we choose the one that best preserves the background.
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(a) Prompt: (“ ” → “the thinker”)

Figure 42. Hypertuning grids on various in-the-wild editing tasks. We compare the best results (prioritizing object appearance) from
state-of-the-art methods, optimized through hyperparameter tuning (highlighted by red boxes), with our results all generated using a single
configuration. When several configurations perform equally, we choose the one that best preserves the background.
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