Supplementary Material
Att-Adapter: A Robust and Precise Domain-Specific Multi-Attributes T2I
Diffusion Adapter via Conditional Variational Autoencoder

A. Evaluation Details

Dataset and Preprocessing FFHQ: FFHQ [6] is a high-
quality public face dataset. To use the data for finetuning
Text-to-image diffusion models, we get a caption per image
by using ChatGPT [1]. We preprocessed 20 facial attributes:
13 attributes for facial compositions, one attribute for age,
and 6 attributes for race.

Specifically, we first obtain head pose information (pitch,
roll, and yaw)' and use them to get frontal view face images;
We extract 16,336 images out of 70,000 images, which are
used as our fine-tuning data. Next, we use 68 landmarks
per image from dlib [7] to obtain the information about fa-
cial composition. For example, to obtain ‘the gap between
eyes’, we use the 39th and 42nd landmarks coordinates and
compute the L1 norm. Min-max normalization is applied
to make the range of the value within O to 1, which means
that 1 and O respectively indicate the max and min values
of a certain attribute from the fine-tuning dataset. The 13
attributes related to facial compositions are: ‘the gap be-
tween eyes’, ‘width of eyes’, ‘height of eyes’, ‘width of
nose’, ‘height of nose’, ‘width of mouth’, ‘height of mouth’,
‘width of face’, ‘height of face’ (from glabella to chin),
‘height between eyebrow and eye’, ‘height between nose
and mouth’, ‘height between mouth and chin’, and ‘width
of eyebrow’.

For age and race extraction, we use deepface [15] with
a detector Retinaface [2]. The age is divided by 100 for
normalization purposes. The six extracted features about
the race are ‘p(Asian)’, ‘p(Black)’, ‘p(Hispanic Latino)’,
‘p(Indian)’, ‘p(Middle Eastern)’, ‘p(White)’.
EVOX: We used a commercial grade vehicle image dataset
from EVOX ” as the experiment data. The dataset includes
high-resolution images across multiple car models collected
from 2018 to 2023, totally 2030 images.

Uhttps://github.com/DCGM/ffhg-features-dataset

2The images used in this study are the property of EVOX Productions,
LLC and are subject to copyright law. The appropriate licenses and permis-
sions have been obtained to ensure the rightful use of these images in our
study. For more information, see ht tps://www.evoxstock.com/.

Predefined 30 text prompts for evaluation ‘A smiling
man’, ‘A smiling woman’, ‘A man surprised’, ‘A woman
surprised’, ‘An angry man’, ‘An angry woman’, ‘A man
crying’, ‘A woman crying’, ‘A sad man’, ‘A sad woman’,
‘A painting of a man’, ‘A painting of a woman’, ‘A marble
sculpture of a man’, ‘A marble sculpture of a woman’, ‘A
3D model of a man’, ‘A 3D model of a woman’, ‘A man
wearing earrings’, ‘A woman wearing earrings’, ‘A man
with a crown’, ‘A woman with a crown’, ‘A man wear-
ing a cap’, ‘A woman wearing a cap’, ‘A man wearing
eyeglasses’, ‘A woman wearing eyeglasses’, ‘A man with
rainbow hair’, ‘A woman with rainbow hair’, ‘A man with
shadow fade hair style’, ‘A woman with ponytail’, ‘A man
wearing a furry cat ears headband’, ‘A woman wearing a
furry cat ears headband’.

Test data creation for the evaluation for the baselines
(Latent Control). The 13 attributes that we prepro-
cessed from FFHQ are used to measure single attribute
performance. The multi-attributes that we used to mea-
sure are as followings: (‘height between_eyebrow_eye’,
‘width_of_face’), (‘width_of_mouth’,‘height_of_face’),
(‘width_of_nose’, ‘height_of_mouth’),
(‘height_between_mouth_chin’,‘gap_between_eyes’),
(‘height_of face’, ‘height_of eyes’),

(‘width_of eyes’,‘width_of face’),

(‘width_of_nose’, ‘height_of_eyes’),
(‘width_of_nose’,‘gap_between_eyes’),

(‘width_of_eyebrow’, ‘height_between_nose_mouth’),
(‘height_of_nose’,‘width_of eyes’). We generate a postive
and a negative pair from each attribute set and compare the
CR and DIS scores as mentioned in the main paper.

Test data creation for the evaluation for the baselines
(Absolute Control). For each prompt, we randomly sam-
ple 50 combinations of 20 attributes. As a result, the at-
tribute combinations for testing contains 1,500 samples; 30
(text prompts) by 50 (20-dimensional attributes combina-
tions per prompt). Specifically, for facial composition at-
tributes, we first obtain the means and the standard devia-


https://www.evoxstock.com/

tions of the attributes from the finetuning data. For exam-
ple, the mean of ‘gap between eyes’ is 0.687 and the stan-
dard deviation is 0.087. We sample from 2 sigma region.
For age, we sample from normal distribution of which mean
and standard deviation is 30 and 10. For race, we uniformly
sample from 0.8 and 1 to assign the biggest value to one of
6 races. Once the major race is determined, the values for
other races are randomly assigned to be sum-to-one.

B. Additional Related Works

Controllable Text-to-Image Generation T2I models [9,
11, 12, 14] generate high quality images from text prompts,
using large pretrained visual language models like CLIP
[10]. However, text only conditioning lacks fine-grained
control as text often underspecifies visual details such as ob-
ject type, perspective and style [5, 17]. To improve control,
various approaches incorporate images as additional condi-
tions. ControlNet [18] conditions image generation on in-
puts like depth, sketches, and semantic maps by training a
copy of the diffusion model on these inputs, allowing spa-
tial control. Similarly, T2I-Adapter [8] uses a lightweight
adapter for external signals such as images, while preserv-
ing the pre-trained model’s capabilities. IP-Adapter [16]
adds controllability via cross-attention networks for both
text and image inputs, enabling guidance with a reference
image.

However, these methods [8, 10, 18] generate images
based on a provided example (e.g., body pose) but lack pre-
cise control over specific attributes. For instance, with a
set of reference faces showing nose widths from narrow-
est to widest, one might want to generate an image with
a specific nose width. Our approach, Att-Adapter, enables
precise attribute adjustments using numeric values derived
from domain-specific data (e.g., nose width ranges), allow-
ing more accurate modifications within targeted domains.

C. Application results: LoRA

LoRA can be used for personalizing pretrained Diffusion
Models [3, 4, 13]. In this section, we show that Att-Adatper
can be combined with the LoRA module that is finetuned
for the appearance of a specific individual. Briefly, we used
22 images of a certain celebrity (Jennifer Lawrence) to fine-
tune LoRA. After finetuning, we combine LoRA and Att-
Adapter which are separately trained. The results are shown
in Fig. 1. We can see that Att-Adapter can adjust the facial
components of the generated image while the person iden-
tity is heavily affected by LoRA module. This shows that
the wide applicability of Att-Adapter.

D. Exploring training settings.

In this section, we explore some of the important factors that
could be needed during the training process for Att-Adapter.

Figure 1. Qualitative experiments showing that LoRA and Att-
Adapter can be combined during the sampling process.

Training iteration First we analyze the quantitative per-
formance per iteration which is shown in Table 1. We can
see the trade-off between the finetuned knowledge and pre-
trained knowledge as iteration goes on. At 100k, we can
better maintain the pretrained knowledge. However, the
performance w.r.t. finetuned knowledge is not good. Af-
ter 200k, even though we lose some pretrained knowledge,
we get better scores for the finetuned knowledge. It is not
easy to determine which checkpoint is better among 200k
and 300k as their performance gap is not conspicuous. Dur-
ing the experiments, we empirically used the model saved
at 200k.

Finetuned knowledge ({) Pretrained knowledge (1)

(Iter.) Facial comp. Age Race CLIP ChatGPT
100k 21.1 9.8 248 0.285 82%
200k 15.57 80 036 0.283 78%
300k 15.92 7.7 036 0.282 77%

Table 1. Performance per iterations. We observe that the perfor-
mance is empirically converged around 200k.

Embedding dimension of Z. Second, we explore the im-
pact of dimensionality of Z on performance in Table 2. In-
terestingly, with 128 dimension, Att-Adapter tend to learn
less the finetuned knowledge while maintaining more the
pretrained knowledge. With 512 dimension, the model
shows decent performance in both finetuned and pretrained
knowledge. With 2048 dimension, the model shows compa-
rable performance with the 512 setting; The age prediction
gets slightly better, but slightly worse in most of the other
measures.

Non-isotropic gaussian prior. Lastly, we compare the
performance of using isotropic/non-isotropic gaussian for
prior distribution. For isotropic gaussian, we estimate a
scalar. For non-isotropic setting, we estimate a vector (i.e.,
the diagonal term of the covariance matrix.) The results are
shown in Table 3. At 100k, we can see that the non-isotropic



Finetuned knowledge ({) Pretrained knowledge (1)

(Dim.) Facial comp. Age Race CLIP ChatGPT
128 20.54 93 0.808 0.285 83%
512 17.42 85 0.799 0.282 80%

2048 17.53 7.7 0987 0.282 75%

Table 2. Performance comparisons given different Z dimensions.
For each setting, the checkpoint saved at 150k iterations is used.

setting is better than the isotropic setting for learning the
finetuned knowledge. We conjecture that this is because the
higher degree of freedom of non-isotropic gaussian (than
the isotropic gaussian) could be beneficial at fitting at some
points. At 200k and 300k, however, the difference gets
smaller and both settings become comparable. We empir-
ically used the isotropic gaussian prior setting for our main
experiments.

Finetuned knowledge (]) Pretrained knowledge (1)

(Iter.) Facial comp. Age  Race CLIP ChatGPT
100k -0.39 -04  -0.663 0.0 0%
200k +0.39 -0.2  +0.207 -0.001 -1%
300k -0.23 -0.1 +0.076 0.0 +2%

Table 3. Performance comparisons of two settings; 1. isotropic
gaussian for the prior, 2. non-isotropic gaussian for the prior dis-
tribution. The values in the table are obtained by subtracting the
values of the second setting from the values of the first setting, i.e.,
(informally) iso value — noniso value.

E. Additional comparison of Att-Adapter and
LoRA

The better performance of Att-Adapter over the baseline in
race attribute can be found in Fig. 2. This can be observed
by comparing the fourth and the sixth columns of (a), which
shows that LoRA is confused of generating White and His-
panic.

Fig. 3 shows the advantage of our method straightfor-
ward. Each column shows the result from the different con-
ditioning value for the given attribute. For each macro col-
umn, we can observe from the center two rows that both
Att-Adapter and LoRA show good performance given the
within-domain conditioning values, i.e., [0,1]. However,
only Att-Adapter can deal with the negative or greater-than-
one conditioning. This is because LoRA is only trained with
dealing with the discretized and tokenized string identifiers
of 0,1,...,9. For example, given -0.55 from the leftmost col-
umn, our preprocessor for discretizing makes the value -5.
We guess LoRA ignores ‘-’ sign, and ‘5’ is taken, which
yields the eyes openness to the similar extent with the third
column (i.e., 0.59). Similarly, given 1.10 in the fourth col-
umn from the left, our discretizer makes it 11, which be-
comes ‘1’ and ‘1’ after tokenized. We can see that LoRA

recognizes the two ‘1’s as ‘1’ by comparing the eye open-
ness with the second column (i.e., 0.14, 1 after discretized).
On the other hand, as shown in the first row, Att-Adapter
can extrapolate to the attribute values beyond [0, 1], to the
unseen domain.

Asian  Indian Black  White M.East Hispanic
Figure 2. Qualitative Baseline comparisons on race. From the
top, (a) LoRA, and (b) Att-Adapter. The prompts of “A photo of
a woman with smiling” and “A photo of a man with shadow fade
hair style” are used for the woman images and the man images.

(a) Width of mouth

(a) Eyes openness

Figure 3. Extrapolation comparisons with LoRA showing the
strength of Att-Adapter. A prompt of “A stylish man smiling” is
used with ‘Asian’ condition.

text prompt | )
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# of attributes
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gap between eyes: 0.64372951...

Figure 4. Visualization of the input setting of LoORA baseline. All
the continuous attributes are discretized and named as special to-
kens. For example, the attribute ‘gap between eyes’ and its value
0.64 becomes ‘Z6’. Multi-attributes are linearly converted and
added consecutively.



Finetuned knowledge (]) Pretrained knowledge (1)

(A.) Facialcomp. Age Race CLIP ChatGPT
0.0 69.43 8.8 1.3 0.298 97 %
0.5 28.96 85 0.50 0.293 94%
0.7 17.96 80 038 0288 89%
0.9 15.57 80 036 0283 78%

Table 4. Performance reports with different As. The lower the
A is, the stronger the pretrained knowledge affects the generation
process while relatively weakening the influence of Att-Adapter.

Eyes Eyes Eyes Eyes
openness closeness

closeness openness

“A painting of a woman” “A seulpture of a man”

Figure 5. Qualitative explorations on the effects of \.

F. Additional Analysis

F.1. X during the sampling

As shown in Eq. 2 in the main paper, A controls the strength
of Att-Adapter when merging the information from differ-
ent input conditions. Intuitively, by reducing A, we can ex-
pect that Att-Adapter will affect the generation process less.
This can be verified by looking at Fig. 5. When A = 0.3, we
can see that the effect of text prompt is strong while the at-
tribute effect is weak. For example, the sculptures does not
look like the given attribute, ‘Asian’. When A = (.8, the ef-
fect of Att-Adapter (where the finetuning knowledge passes
through) gets stronger as we can see that the results in the
third row have more human-like texture and face-cropped
view. The quantitative results can be found in Table. 4. We
can first see that pretrained knowledge, measured by CLIP
and ChatGPT is maintained better with lower . The higher
the A is, on the other hand, we can expect the stronger ef-
fects of the fine-tuned knowledge, in exchange for losing
the pretrained knowledge.

F.2. Robustness for correlated attributes.

As shown in Table 2 in the main paper, Att-Adapter out-
performs baselines in disentangling attributes due to joint
attribute learning. To provide further evidence, we per-
formed additional analysis on correlated attributes such as
“mouth width” and "eye openness”, which typically co-vary
through ”smiling” (wider mouth coinciding with narrower
eyes). As shown in Fig. 6 left, Att-Adapter can manipulate

Mouth width +
Eyes openness +

(Eyes width, Eyes openness)
(+,4)

— ﬂopermqss) (+, /‘loenness)

(= Hopenness) ~ (+,-)
(Eyes-eyebrows, Eyes openness)

Figure 6. Disentanglement of correlated attributes by Att-Adapter.

them independently (wider mouth + and wider eye open-
ness +). More examples showing independent controls over
the correlated attributes can be seen in Fig. 6 right.

F.3. Scalability validation

We validated scalability by measuring resource usage with
increasing number of attributes. With a batch size of 16 and
latent dimension Z € R!%?4, using one attribute requires
around 23,704MB of VRAM and 97MB of storage. Each
additional attribute increases VRAM by only about 338MB
( 1.4% of the initial VRAM) and storage by just 0.004MB
(10.004% of the initial storage). These results support our
claim of handling numerous attributes with negligible in-
creases in memory usage.

F.4. Ablation Study (CVAE v.s. Dropout Regular-
ization)

We explore the effect of dropout in preventing overfitting
by conducting additional comparisons. Results in the Table
below confirm using dropout (the best rate of 0.25 is re-
ported) indeed reduces identity similarity which indicates
improved regularization. However, even at this optimal
dropout rate, performance remains worse than our CVAE-
based approach. These confirms the effectiveness of CVAE
in regularizing Att-Adapter and prevent overfitting.

Naive
w.0. drop withdrop Ours
28.5% 23.6% 6.2%

ID sim ({)

F.5. Challenging attributes

In this section, we show that Att-Adapter can be used be-
yond frontal-view images. In order to show this, we ex-
tend our training dataset from the frontal-view face images
to the entire FFHQ dataset. We also additionally add three
attributes; yaw, pitch, and roll’. The results are shown in
Fig. 7. Interestingly, even though Att-Adapter is not specif-
ically designed for understanding 3D domain, we can see
that the left-right rotation (i.e., yaw) and the up-down rota-
tion (i.e., pitch) can be controlled. However, we observed
that roll is not controllable. To improve this, we believe

3https://github.com/DCGM/ffhg-features-dataset



additional facial dataset with diverse roll information is re-
quired as FFHQ face-cropped dataset is face aligned. We
also think it would be interesting and powerful if 3D do-
main knowledge could be aggregated in Att-Adapter which
is beyond our research scope.

Additionally, we show that Att-Adapter can control two
attributes simultaneously in Fig. 8 and Fig.9.

Figure 7. Qualitative results on additional attributes control. The
results are generated by taking a prompt of “A smiling woman”.

- Yaw & +
eyes openness

Figure 8. Additional two-attributes controlling examples. A
prompt of “A smiling woman” is used.

— Y-axis: Mouth openness + —  Y-axis: Philtrum length +

X-axis: Gap between eyes X-axis: Mouth width

Figure 9. Additional two-attributes controlling examples. A
prompt of “A smiling woman” is used.

Yaw + - Pitch +

F.6. Dependency on Quality of Attribute Annota-
tions and Paired v.s. Unpaired Data Perfor-
mance

Att-adapter is specifically designed for scenarios where ex-
plicit paired data is unavailable but attribute annotations are
present. Such scenarios frequently occur in practice, for
example, product images are associated with metadata and
manual annotations. In contrast, other methods like Con-
ceptSlider can be effective in scenarios lacking explicit at-
tribute annotations by relying on paired data. Adapting Att-
Adapter to such scenarios is nontirivial issue, which can be
an interesting future direction.
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