
DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding

Supplementary Material

This supplementary material is organized as follows: Sec-
tion A details the implementation of DisCoRD. Section B
provides additional information on the datasets and evalua-
tion metrics. Section C offers a comprehensive analysis of
sJPE. Section D presents quantitative results excluded from
the main paper. Section E includes additional qualitative
results. We highly recommend viewing the accompanying
video, as static images are insufficient to fully convey the
intricacies of motion.

A. Implementation Details
Table A provides an overview of the implementation details
for our method. These configurations were employed to train
the DisCoRD decoder using the pretrained Momask [12]
quantizer. Specifically, the 512-dimensional codebook em-
beddings from MoMask are projected into the conditional
channel dimension. This projection is concatenated with
Gaussian noise of the same dimensionality as the output
channel. The concatenated representation is subsequently
projected into the input channel dimension of the U-Net ar-
chitecture. The U-Net processes this input and transforms it
back into the output channel dimension, generating the final
output shape. For training, we used an input window size of
64 and trained the model for 35 hours on a single NVIDIA
RTX 4090 Ti GPU.

B. Datasets and Evaluations
In this section, we provide additional explanations regarding
the co-speech gesture generation and music-to-dance gener-
ation tasks that we were unable to describe in detail in the
main paper.

B.1. Datasets.
For the co-speech gesture generation task, we utilized the
SHOW dataset [65], a 3D holistic body dataset compris-
ing 26.9 hours of in-the-wild talking videos. For the music-
driven dance generation task, we used a mixed dataset com-
bining AIST++ [26] and HumanML3D [11] where AIST++
is a large-scale 3D dance dataset created from multi-camera
videos accompanied by music of varying styles and tempos,
containing 992 high-quality pose sequences in the SMPL
format.

B.2. Evaluations.
To evaluate the co-speech gesture generation task, we used
Frechet Gesture Distance (FGD) [34], which measures the
difference between the latent distributions of generated and
real motions. Since our focus is on body movements, we

Training Details

Optimizer AdamW (0.9, 0.999)
LR 0.0005
LR Decay Ratio 0
LR Scheduler Cosine
Warmup Epochs 20
Gradient Clipping 1.0
Weight EMA 0.999
Flow Loss MSE Loss

Batch Size 768
Window Size 64
Steps 481896
Epochs 200

Model Details

Input Channels 512
Output Channels 263
Condition Channels 256
Activation SiLU
Dropout 0
Width (512, 1024)
# Resnet / Block 2
# Params 66.9M

Table A. Implementation details for training the DisCoRD de-
coder on the HumanML3D dataset using the pretrained Momask
quantizer.

reported body FGD, which quantifies differences specifically
for the body part, for ProbTalk [31]. For TalkSHOW [65],
which only utilizes holistic FGD—a metric that measures
differences across the entire motion, including the face and
hands—we reported the holistic FGD. To evaluate the music-
to-dance generation task, we utilized Distk, which quantifies
the distributional spread of generated dances based on ki-
netic features, and Distg, which does the same for geometric
features, as proposed in [54]. A smaller difference between
the distributions of the generated motion and the ground
truth motion indicates that the Distk and Distg values of
the generated motion align closely with those of the ground
truth, reflecting a similar level of distributional spread.

C. Additional Analysis on sJPE

To evaluate the sample-wise naturalness of reconstructed
motions, we introduce the symmetric Jerk Percentage Er-
ror (sJPE), as defined in Equation 5 of the main paper. We
present detailed formulations of Noise sJPE and Static sJPE,



supported by analysis using generated motion samples. Fur-
thermore, qualitative comparisons highlight the effective-
ness of DisCoRD against state-of-the-art discrete methods.
Finally, we investigate the alignment of sJPE with human
preference to validate its perceptual relevance.

C.1. Visualization of Fine-Grained Motion
To analyze fine-grained motion trajectories, we follow a
three-step procedure. First, we select a joint for visualization,
typically hand joints due to their high dynamism, and track
their positional changes over time. Second, we apply a Gaus-
sian filter to smooth the trajectory, reducing noise. Finally,
we compute the difference between the smoothed and origi-
nal trajectories to isolate fine-grained motion components.
This method allows for detailed evaluation of frame-wise
noise and under-reconstructed regions in motion trajectories.
The visualizations in Figure 5 of the main paper and the qual-
itative samples in the supplementary material are generated
using this process.

C.2. Details on sJPE.
Within the symmetric Jerk Percentage Error (sJPE), we de-
fine two components: Noise sJPE and Static sJPE. These
isolate the instances where the predicted jerk overestimates
or underestimates the ground truth jerk, respectively.
Noise sJPE and Static sJPE. Noise sJPE captures the av-
erage overestimation of jerk in the predicted motion signal,
meaning frame-wise noise, corresponding to cases where
Jpred,t > Jtrue,t. It is defined as:

Noise sJPE =
1

n

n∑
t=1

max (0, Jpred,t − Jtrue,t)

|Jtrue,t|+ |Jpred,t|
. (6)

The operator max(0, x) ensures that only positive differ-
ences contribute to Noise sJPE, separating overestimations
from underestimations.

Noise sJPE can be seen on the red box of Figure A. Time
steps where motion trajectory is noisy compared to ground
truth motion show bigger jerk. The area under the predicted
jerk and above the ground truth jerk, shown in blue area, is
proportional to the Noise sJPE, meaning frame-wise noise.

Static sJPE measures the average underestimation of jerk,
meaning lack of dynamism in the predicted motion, corre-
sponding to cases where Jpred,t ≤ Jtrue,t. It is defined as:

Static sJPE =
1

n

n∑
t=1

max (0, Jtrue,t − Jpred,t)

|Jtrue,t|+ |Jpred,t|
. (7)

Static sJPE can be seen on the green box of Figure A. Time
steps where motion trajectory is under-reconstructed com-
pared to ground truth motion show smaller jerk. The area
above the predicted jerk and under the ground truth jerk,
shown in red area, is proportional to the Static sJPE, mean-
ing under reconstructed motions.

The overall sJPE can be expressed as the sum of Noise
sJPE and Static sJPE:

sJPE = Noise sJPE + Static sJPE. (8)

These formulations provide a measure of prediction ac-
curacy by separately accounting for the tendencies of the
predictive model to overestimate or underestimate the true
motion jerks.

Figure A. Relationship between fine-grained trajectory and jerk:
Frame-wise noise in predicted motions, highlighted in the red box,
results in higher jerk values compared to the ground truth, repre-
sented by the blue areas. The sum of the blue areas corresponds to
Noise sJPE. Conversely, under-reconstruction in predicted motions,
highlighted in the green box, leads to lower jerk values compared
to the ground truth, represented by the red areas. The sum of the
red areas corresponds to Static sJPE.

C.3. Qualitative Results on Joint Trajectory and
Jerk

We present a series of figures demonstrating the effective-
ness of DisCoRD in reconstructing smooth and dynamic
motion. For each sample, the first row visualizes the mo-
tion trajectory, while the second row plots the corresponding
jerk at each time step, with the calculated sJPE displayed



T2M-GPT (sJPE: 0.423) MMM (sJPE: 0.468) Momask (sJPE: 0.543) Ours (sJPE: 0.306)

Figure B. Joint Trajectory and Jerk: Under-Reconstruction in Discrete Methods DisCoRD effectively reduces the red area, demonstrating
its capability to reconstruct dynamic motion accurately. This improvement is also reflected in the lower sJPE value.

T2M-GPT (sJPE: 0.637) MMM (sJPE: 0.602) Momask (sJPE: 0.544) Ours (sJPE: 0.330)

Figure C. Joint Trajectory and Jerk: Frame-Wise Noise in Discrete Methods DisCoRD significantly reduces the blue area, indicating its
ability to generate smooth motions that closely resemble the ground truth. This improvement is further reflected in the lower sJPE value.

at the top. This visualization enables detailed analysis of
fine-grained trajectories in predicted motions and highlights
the contributions of Noise sJPE and Static sJPE to the overall
sJPE.

We compare DisCoRD with recent discrete methods, in-
cluding T2M-GPT [67], MMM [42], and Momask [12]. Mo-
tion samples that illustrate under-reconstruction in discrete
methods are presented in Figure B, while those that exhibit
frame-wise noise are shown in Figure C. Samples showing
both issues in discrete models are displayed in Figure D. Dis-
CoRD effectively reduces frame-wise noise while accurately
reconstructing dynamic, fast-paced motions. This is shown
in both the visualizations and the sJPE results.

C.4. Correlation between sJPE and human percep-
tion.

To further verify that sJPE aligns with human judgment
of naturalness, we conducted an additional user study. We

asked participants to rank three models—MLD, MoMask,
and ours—in order of naturalness, guided as Figure J. The
user interface for this user study is shown in Figure L. The
rankings were scored such that the first place received 1 point,
the second place 2 points, and the third place 3 points. Us-
ing these human scores, we calculated Pearson’s correlation
between the human scores and two metrics—MPJPE and
sJPE— for each sample. During this process, we excluded
the lowest 10% of samples in terms of human score standard
deviation among models, as these were considered indistin-
guishable by human evaluators. Our analysis revealed that
the average Pearson’s correlation between MPJPE and hu-
man scores was 0.181, whereas the correlation between sJPE
and human scores was significantly higher at 0.483. This
result demonstrates the effectiveness of sJPE in evaluating
sample-wise naturalness.



T2M-GPT (sJPE: 0.408) MMM (sJPE: 0.482) Momask (sJPE: 0.544) Ours (sJPE: 0.336)

T2M-GPT (sJPE: 0.552) MMM (sJPE: 0.526) Momask (sJPE: 0.577) Ours (sJPE: 0.362)

Figure D. Joint Trajectory and Jerk: Both Frame-Wise Noise and Under-Reconstruction in Discrete Methods DisCoRD addresses
both frame-wise noise and under-reconstruction by simultaneously reducing the blue and red areas. This demonstrates its ability to generate
smooth and dynamic motions, closely aligning with the ground truth. This further supported by the lower sJPE values.

D. Additional Quantitative Results

D.1. Performance on Text-to-Motion Generation.
In Table B, we present a comparison of our method against
additional results from various text-to-motion models. Our
method consistently achieves strong performance on the
HumanML3D and KIT-ML [43] test sets, even when evalu-
ated alongside these additional models. While ReMoDiffuse
achieves particularly strong performance on KIT-ML, it is
worth noting that its performance benefits from the use of
a specialized database for high-quality motion generation,
which makes direct comparisons less appropriate.

D.2. Performance on Various Tasks.
In Table C, we present additional evaluation results for co-
speech gesture generation. Following [65], we additionally
report Diversity, which measures the variance among mul-
tiple samples generated from the same condition, and Beat
Consistency (BC), which evaluates the synchronization be-
tween the generated motion and the corresponding audio. In
Table D, we provide additional evaluation results for music-

to-dance generation. Following [47], we report FIDk to mea-
sure differences in kinetic motion features and FIDg for ge-
ometric motion features. Additionally, we include the Beat
Align Score (BAS) to assess the synchronization between
motion and music. While [54] has shown that these metrics
are not fully reliable and often fail to align with actual output
quality, we include them to follow established conventions.

E. Additional Qualitative Results

E.1. Motion visualization.

In Figure F and Figure G, we present qualitative compar-
isons between our model and other leading approaches. In
Figure H, we additionally display more qualitative results
of our method. We observed that our method effectively fol-
lows the text prompts while maintaining naturalness in the
generated outputs. Again, we highly recommend viewing
the accompanying video, as static images are insufficient to
fully convey the intricacies of motion.



Datasets Methods R Precision ↑ FID ↓ MultiModal Dist ↓ MultiModality ↑
Top 1 Top 2 Top 3

Human
ML3D

MDM [53] - - 0.611±.007 0.544±.044 5.566±.027 2.799±.072

MLD [6] 0.481±.003 0.673±.003 0.772±.002 0.473±.013 3.196±.010 2.413±.079

MotionDiffuse [68] 0.491±.001 0.681±.001 0.782±.001 0.630±.001 3.113±.001 1.553±.042

ReMoDiffuse [69] 0.510±.005 0.698±.006 0.795±.004 0.103±.004 2.974±.016 1.795±.043

Fg-T2M [59] 0.492±.002 0.683±.003 0.783±.024 0.243±.019 3.109±.007 1.614±.049

M2DM [22] 0.497±.003 0.682±.002 0.763±.003 0.352±.005 3.134±.010 3.587±.072

M2D2M [7] - - 0.799±.002 0.087±.004 3.018±.010 2.115±.079

MotionGPT [70] 0.364±.005 0.533±.003 0.629±.004 0.805±.002 3.914±.013 2.473±.041

MotionLLM [62] 0.482±.004 0.672±.003 0.770±.002 0.491±.019 3.138±.010 -
MotionGPT-2 [60] 0.496±.002 0.691±.003 0.782±.004 0.191±.004 3.080±.013 2.137±.022

AttT2M [72] 0.499±.003 0.690±.002 0.786±.002 0.112±.006 3.038±.007 2.452±.051

MMM [42] 0.504±.003 0.696±.003 0.794±.002 0.080±.003 2.998±.007 1.164±.041

T2M-GPT [67] 0.491±.003 0.680±.003 0.775±.002 0.116±.004 3.118±.011 1.856±.011

+ DisCoRD (Ours) 0.476±.008 0.663±.006 0.760±.007 0.095±.011 3.121±.009 1.831±.048

BAMM [41] 0.525±.002 0.720±.003 0.814±.003 0.055±.002 2.919±.008 1.687±.051

+ DisCoRD (Ours) 0.522±.003 0.715±.005 0.811±.004 0.041±.002 2.921±.015 1.772±.067

MoMask [12] 0.521±.002 0.713±.002 0.807±.002 0.045±.002 2.958±.008 1.241±.040

+ DisCoRD (Ours) 0.524±.003 0.715±.003 0.809±.002 0.032±.002 2.938±.010 1.288±.043

KIT-
ML

MDM [53] - - 0.396±.004 0.497±.021 9.191±.022 1.907±.214

MLD [6] 0.390±.008 0.609±.008 0.734±.007 0.404±.027 3.204±.027 2.192±.071

MotionDiffuse [68] 0.417±.004 0.621±.004 0.739±.004 1.954±.062 2.958±.005 0.730±.013

ReMoDiffuse [69] 0.427±.014 0.641±.004 0.765±.055 0.155±.006 2.814±.012 1.239±.028

Fg-T2M [59] 0.418±.005 0.626±.004 0.745±.004 0.571±.047 3.114±.015 1.019±.029

M2DM [22] 0.416±.004 0.628±.004 0.743±.004 0.515±.029 3.015±.017 3.325±.037

M2D2M [7] - - 0.753±.006 0.378±.023 3.012±.021 2.061±.067

MotionGPT [70] 0.340±.002 0.570±.003 0.660±.004 0.868±.032 3.721±.018 2.296±.022

MotionLLM [62] 0.409±.006 0.624±.007 0.750±.005 0.781±.026 2.982±.022 -
MotionGPT-2 [60] 0.427±.003 0.627±.002 0.764±.003 0.614±.005 3.164±.013 2.357±.022

AttT2M [72] 0.413±.006 0.632±.006 0.751±.006 0.870±.039 3.039±.021 2.281±.047

MMM [42] 0.404±.005 0.621±.006 0.744±.005 0.316±.019 2.977±.019 1.232±.026

T2M-GPT [67] 0.398±.007 0.606±.006 0.729±.005 0.718±.038 3.076±.028 1.887±.050

+ DisCoRD (Ours) 0.382±.007 0.590±.007 0.715±.004 0.541±.038 3.260±.028 1.928±.059

MoMask [12] 0.433±.007 0.656±.005 0.781±.005 0.204±.011 2.779±.022 1.131±.043

+ DisCoRD (Ours) 0.434±.007 0.657±.005 0.775±.004 0.169±.010 2.792±.015 1.266±.046

Table B. Additional quantitative evaluation on the HumanML3D and KIT-ML test sets. ± indicates a 95% confidence interval. +DisCoRD
indicates that the baseline model’s decoder is replaced with our DisCoRD decoder. Bold indicates the best result, while underscore refers
the second best.

Methods Diversity ↑ BC → (0.868)
TalkSHOW [65] 0.821 0.872
+DisCoRD(Ours) 0.919 0.876

ProbTalk [31] 0.259 0.795
+DisCoRD(Ours) 0.331 0.866

Table C. Additional quantitative results on each method’s SHOW test set. The results demonstrate that our method performs on par with,
or surpasses, the baseline models.

E.2. User preference study details.

We conduct two user studies to (1) validate our motivation
and method effectiveness and (2) evaluate how well sJPE
aligns with human perception. The first study, shown in
Figure E, indicates that the discrete model Momask outper-
forms the continuous model MDM in faithfulness but lags
in naturalness. In contrast, DisCoRD surpasses both, demon-
strating its ability to generate motion that is both natural
and faithful. In the second study, we find that sJPE exhibits
2.7 times higher correlation with human preference for natu-
ralness compared to MPJPE, highlighting its effectiveness

in evaluating sample-wise motion naturalness. Participants
were guided to evaluate both faithfulness and naturalness,
as shown in Figure I. Given two motion videos generated
by two different models on the same prompt, participants
were asked to choose a better one in terms of faithfulness
and naturalness, as shown in Figure K. Total 41 participants
participated in this user study.



Methods FIDk ↓ FIDg ↓ BAS ↑
Ground Truth 17.10 10.60 0.2374

TM2D [10] 19.01 20.09 0.2049
+DisCoRD(Ours) 23.98 88.74 0.2190

Table D. Additional quantitative results on the AIST++ test set. The results demonstrate that, although our method shows performance
degradation on FIDk and FIDg, which are known to be unreliable, it achieves improvement in the Beat Align Score.

Win	Rate	(%)

N
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ss 35.9Momask 64.1 MDM

58.9Ours 41.1 MDM

53.7Ours 46.3 Momask

Fa
ith
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s

51.5Momask 48.5 MDM

72.5Ours 27.5 MDM

65.7Ours 34.3 Momask

Figure E. User study results on the HumanML3D dataset. Each bar represents a comparison between two models, with win rates depicted
in blue and loss rates in red, evaluated based on naturalness and faithfulness.

“person	is	acting	like	human	monkey”

“a	man	stumbles stepping	out	to	his	left	before returning	to	a	
standing	position.”

MLD MoMask DisCoRD (Ours)

Figure F. Qualitative comparisons on the test set of HumanML3D.



MLD MoMask DisCoRD	(Ours)

the	person	is	shivering	and	then	rubbing	their	hands	together	to	stay	warm.

a	person	waves	with	their	left	hand,	then	waves	with	their	right.

Not	rubbing	hands❌ Under-reconstruction❌

Not	waving	right	hand❌ Frame-wise	noise❌

Figure G. Additional qualitative comparisons on the HumanML3D test set. The continuous method, MLD, often fails to perfectly align
with the text consistently, while the discrete method, MoMask, exhibits issues such as under-reconstruction, resulting in minimal hand
movement, or unnatural leg jitter caused by frame-wise noise.

a	person	looks	to	be	petting	a	
dog	with	right	hand.

A	person	appears	to	be	
playing	the	violin.

someone	puts	both	of	their	hands	on	their	chests	
and	appears	to	be	laughing.	then	waves	their	right.

a	person	is	boxing,	throwing	various	combinations	
and	demonstrating	fighting	footwork.

Figure H. Additional qualitative results of our method on the HumanML3D test set.



Method
Sampling Steps

2 16 50 100
DDPM (DDIM sample) 0.055 / 0.007s 0.044 / 0.087s 0.038 / 0.331s 0.035 / 0.689s
Linear SDE 8.998 / 0.024s 0.047 / 0.157s 0.033 / 0.472s 0.032 / 0.955s
Ours 0.034 / 0.016s 0.032 / 0.221s 0.032 / 0.703s 0.032 / 1.426s

Table E. FID and decoding time (s) for different sampling steps (↓). The original MoMask has a decoding time of 0.244 seconds. We
trained a diffusion decoder (DDPM) using the same architecture as our rectified flow decoder for a fair comparison. For the Linear SDE
variant, we replaced only the sampler in our model with the Euler-Maruyama sampler, keeping all other components identical.

Figure I. Guidelines for user study in the Main paper: participants were asked to evaluate Faithfulness and Naturalness, excluding hand
and facial movements that are not included in HumanML3D.



Figure J. Guidelines for User Study in the Supplementary: Participants were asked to evaluate Naturalness, excluding hand and facial
movements that are not included in HumanML3D.



Figure K. User evaluation interface for the user study in the Main paper: participants were presented with two randomly selected videos
and asked to choose the better sample in terms of faithfulness and naturalness.



Figure L. User evaluation interface for the user study in the supplementary: participants were presented with a grid layout containing the
GT video and three generated videos. Using the GT video as the upper bound, they were asked to rank the three generated videos in terms of
naturalness.


