Learning Large Motion Estimation from Intermediate Representations with a
High-Resolution Optical Flow Dataset Featuring Long-Range Dynamic Motion

Supplementary Material

Our supplementary material provides additional infor-
mation about our proposed method and includes detailed
discussions on the following contents that were not exten-
sively covered in the main paper:

* Implementation details (Sec. A).

e Comparison with existing datasets and benchmarks for
optical flow (Sec. B).

* Comparison with local cost volume (Sec. C)

* Additional analysis of Sec. 6 of the main paper (Sec. D).

* Design of distance loss (Sec. E)

* Additional qualitative results (Sec. F).

* Supplementary details of RelayFlow-4K (Sec. G).

* Hyper-parameter analysis (Sec. H).

e Limitation and future work (Sec. I).

A. Implementation details

Our implementation builds upon RAFT [17] and GMA [7],
adopting their main configurations to ensure a consistent
network structure, except for the downscaling factor. Previ-
ous methods [7, 16, 17] commonly employ a 1/8 downscal-
ing for correlation computations, resulting in complex in-
ference when estimating flow in 4K images. Consequently,
we modified the downscaling factor from 1/8 to 1/16. With
1/8 downscaling and a batch size of 1, memory consump-
tion surpasses 60 GB, rendering it infeasible for standard
GPUs. In contrast, 1/16 downscaling enables 4K resolution
inference with less than 20 GB of memory, effectively over-
coming this limitation. We set 100K training iterations per
stage and crop images to 1920x 1088 for training. We train
our model with the batch size 1. The inital learning rate is
2¢~% and, and it is halved at the beginning of each stage
before resuming training. Following prior works [7, 17],
we use § = 0.8 and v = 0.85 for L4, and a distance
loss threshold (p of 368 pixels with @ = 0.3. We set the
stage K from O to 4, and adjusted the refinement iteration
M using 12 during training and 24 during evaluation. Other
components, such as the optimizer and related settings, also
follow the training configuration of prior works.

B. Comparison with existing datasets and
benchmarks for optical flow

We compare recent optical flow datasets in Tab. B, provid-
ing an overview of the available images, ground truths, and
additional data characteristics such as stereo disparity, in-
termediate flow, and distance maps

Table A. Generalization performance comparison with local cost
volume.

Train Sintel (train) KITTI-15 (train) RelayFlow (test)

Data Scale| Method Clean Final Fl-epe Fl-all Al I\Xatch Unmatch
8 RAFT 143 271 5.04 174 OOM OOM OOM

C+T RAFT-Local| 1.46 2.68 5.04 17.5 34.93 27.03 210.64
1/16 [RAFT 1.86 3.16 7.52 26.5 1699 832 210.00

C. Comparison with local cost volume

As mentioned in Tab. 3 of the main paper, RAFT encoun-
tered OOM at 1/8 resolution on the RelayFlow test set, due
to the high-resolution images. To mitigate this, we em-
ployed a local cost volume [17] formulation to reduce mem-
ory usage and enable evaluation. As shown in Tab. A, the re-
sult with the local cost volume avoided OOM but performed
poorly on large motions. It even performs worse than 1/16
RAFT model on the RelayFlow test set.

D. More about comparison with approaches
using accumulation and the intermediate
frames

We continue the description of the comparison with the ac-
cumulation methods from Sec. 6. We demonstrate more
about our experiment settings and utilized datasets.

D.1. HS-Sintel dataset

As mentioned in previous work [ 18], for HS-Sintel [6], GT
flow is only provided at 1008 FPS and is not available for
other frame rates. Therefore, following the standard proto-
col [18], we utilize the 24 FPS GT flows from MPI Sintel [2]
as ground truth labels to assess the predictions derived from
1008 FPS video sequences of HS-Sintel.

We present a comparison with other methods on HS-
Sintel in the 1st column of Tab. 4 of the main paper. Exist-
ing methods [9, 18] employ a multi-frame approach, utiliz-
ing intermediate frames not only during training but also at
inference time. Notably, our method achieves the best per-
formance in non-occlusion regions and the second-highest
overall performance. This indicates that our proposed meth-
ods are effective not only on our dataset, RelayFlow-4K, but
also on others, particularly excelling in matching regions as
discussed in the main paper.

D.2. CVO dataset

We also conduct experiments on the CVO dataset [18],
which has a relatively small resolution of 512x512. As
mentioned in Sec. 3.2 of the main paper, the CVO dataset
provides optical flow annotations for intermediate frames,



Table B. Overview of optical flow datasets. We present available images and ground truths for optical flow (OF). We check whether each
dataset provides stereo disparity (ST), intermediate flow (inter. flow), and a match map (match.). | : partially exist.

Dataset Venue OF ST #images #gtframes #pix inter. flow match. scenes source ph.realism motion
RelayFlow-4K (Ours) - v v 8428 37900 8.3M v v 35 CGI high realistic
CVO [18] ICCV’23 v X 83594 262724  0.3M X v 11942 CaGl low random
Spring [11] CVPR23 v 5953 23812 2.1M X v 47 CGI high realistic
AutoFlow [15] CVPR’21 VA { 40000 40000 0.3M X X n/a CGI low random
HumanOF [13] 1ICV’20 v X 238900 238900  0.4M X (V)T 18432 CGl med. rand./human
VKITTI2 [3] arXiv’'20 v v 21210 84840 0.5M X v 5 CGI med. automative
Vimeo-90K [19] 1IICV’19 VA { 89800 89800 0.3M X X 4278 mixed low random
HS Sintel [6] CVPR’17 v X 4730 4704 1.8M v v 13 CGI high realistic
VIPER [14] ICCV’17 v X 186285 372570  2.1M X X 184 CGI high automotive
Driving [10] CVPR’16 v v 4392 17568 0.5M X v 1 CGI med. automotive
FlyingThings3D [10] CVPR’16 v v 24084 96336 0.5M X v 2676 CGI low random
HDIK [8] CVPRW’I6 v X 1074 1074 2.8M X v 63 real high automotive
Monkaa [10] CVPR’I6 v 8640 34560 0.5M X v 8 CGI low random
FlyingChairs [4] ICCV’15 voooX 22872 22872 0.2M X X n/a CGI low random
KITTI 2015 [12] CVPR’15 v v 400 400 0.5M X v n/a real high automotive
KITTI 2012 [5] CVPR’12 v v 389 389 0.5M X v n/a real high automotive
MPI Sintel [2] ECCV'12 v 1593 1593 0.4M X v 35 CGl high realistic
Middlebury-OF [1] nevell VAR { 16 16 0.2M X X 16 HT/CGI med. small

similar to our work and can therefore be used to train our
framework. We follow the training settings of AccFlow, the
method accompanying the CVO dataset, to implement our
proposed flow estimation strategy while incorporating sup-
plementary techniques, such as matching cost distillation
and incremental time-step learning.

We present our results with others on the CVO dataset
in the 2nd and 3rd columns of Tab. 4 of the main paper,
where our method achieves the second-best performance
overall. Notably, the CVO dataset features random object
movements, and our approach demonstrates higher flow es-
timation accuracy by utilizing only the reference and target
frames during inference, without relying on intermediate
frames. When comparing the base model (e.g., GMA and
RAFT) with Relay (Ours), our approach demonstrates sig-
nificant improvements in non-occluded regions. This con-
sistent trend across all datasets highlights the generalization
ability of our method. However, it remains relatively weak
in occluded regions. A key advantage of our approach is
that it uses intermediate frames only during training. In
other words, it employs the same test setup as the baseline,
offering a significant benefit over other methods.

D.3. Computational costs

We further compare our strategy with other optical flow es-
timation methods in terms of runtime and memory usage
during the inference phase, using the RAFT model [17] as
a baseline. For AccFlow [18], we applied the setting from
the original paper, using 5 intermediate frames for a total of
7 frames. In contrast, both our method and the baseline use
only 2 frames: the reference and target frames.

Table. 5 of the main paper presents the results of run-
time and memory usage measured across various image
sizes. We measure the computational cost using an NVIDIA

A6000 GPU, and for memory usage, we record values after
a sufficient warm-up process rather than the peak memory.
Our proposed method requires only the reference and target
frames during the inference phase, identical to the baseline,
and does not require any additional modules, resulting in
the same runtime and memory usage as the baseline. On
the other hand, AccFlow requires intermediate frames dur-
ing the inference process, just as it does during its train-
ing phase. Consequently, this results in significantly higher
runtime requirements during inference. Furthermore, Ac-
cFlow relies on additional modules to accumulate optical
flow between adjacent frames, which increases the demand
for memory during inference. As a result, when performing
flow estimation between high-resolution 4K images, out-
of-memory (OOM) issues due to the peak memory usage.
While the approach of accumulating intermediate frames
during the inference phase achieves strong performance, its
practicality decreases as image resolution increases due to a
sharp rise in inference time and memory usage. In contrast,
our method proves to be well-suited for the current trend
toward high-resolution data.

E. Design of distance loss

Our motivation for down-weighting the loss based on the
distance from matched regions in occluded areas stems
from that these regions lack sufficient visual cues, making
predictions noisy and leading to high, unstable gradients.
Prioritizing regions with reliable correspondences helps the
model learn stable patterns, while unmatched areas are re-
fined via neighboring propagation. As shown in Tab. C, al-
ternatives like removing occluded regions or up-weighting
them by distance lead to reduced performance.



Table C. Ablation of design of distance loss

. All Match Unmatch
Loss Ablation Study EPE ipx |EPE Ipx | BPE  Ipx
RAFT 18.54 25.90|8.31 23.24|223.82 84.91

+ Removing Occlusion 18.23 17.90|8.43 14.95|236.01 83.73
+ Matched-region Inverse Distance Loss | 18.40 20.40|9.47 18.17 [217.02 76.24
+ Matched-region Distance Loss (Ours) | 15.36 17.71|6.89 14.79 | 203.73 82.58

Table D. Hyper-parameter analysis of o in Eq. (8) with
RAFT [17].
All Match Unmatch
[T EPE Ipx EPE Ipx EPE Ipx

0.1 14.73 15.20 6.04 12.34 207.8 78.91
0.3 11.69 15.52 4.08 12.64 181.01 79.58
0.5 12.99 15.67 5.09 12.79 188.54 79.54
0.7 12.92 16.06 5.18 13.21 185.01 79.36
0.9 13.02 15.56 5.22 12.69 186.46 79.39

F. Additional qualitative results

We show more qualitative comparisons for optical flow to
showcase the effectiveness of our method in Fig. A. Our
method qualitatively improves the performance of existing
models, regardless of the base model used. Notably, it esti-
mates flows for large displacements previously unattainable
and accurately captures object boundaries, enabling fine op-
tical flow estimation.

G. Details of RelayFlow-4K dataset

We visualize more samples from our RelayFlow-4K dataset
in Fig. B, C, D, and E. We present the current image and its
subsequent frame, along with annotations that include the
optical flow and depth map. For training efficiency, we also
provide additional data such as a match map and a distance
map. Although not explicitly shown in the sample figures,
each frame is accompanied by an additional frame linked
through a stereo setting (right frame), and optical flow be-
tween the right frames is also provided.

We provide comprehensive scene configurations and the
corresponding baselines used for each scene through con-
figuration files included with the dataset. These files in-
clude all the necessary details required for further training
and analysis. Additionally, the annotations in our dataset,
such as optical flow, depth, and distance maps, are refined
and standardized into a consistent discrete range prior to
distribution. For the match map, unlike traditional occlu-
sion maps, we precisely identify occlusion regions while
improving the pixel matching process through an additional
masking step. This involves masking pixels with significant
RGB differences that exceed a predefined threshold, ensur-
ing accurate and reliable construction of the match map for
pixel-level correspondence.

H. Hyper-parameter analysis

As shown in Tab. D, we conduct a hyper-parameter analy-
sis of the weight o for the matching cost distillation loss in
the main paper. To this end, we perform a hyper-parameter
analysis by applying only the distance and matching cost
distillation losses without using the incremental time-step
learning strategy. Specifically, we train at stage 0 and then
directly skip to stage 4, applying the matching cost distilla-
tion loss and distance loss.

We reveal the impact of the trade-off between EPE and
1px across all match and unmatch points. Across all cate-
gories, the lowest EPE is achieved when o = 0.3. Although
the best 1px accuracy is observed at o = 0.1, this setting
resulted in significantly higher EPE values. From the per-
spective of 1px accuracy, the next best option is o = 0.3.
Considering the trade-off between EPE and 1px accuracy,
o = 0.3 was determined to be the most suitable value for
our experiments and the application of matching cost dis-
tillation loss and was thus selected as the optimal setting.
Apart from these detailed performance metrics, the pro-
posed matching cost distillation demonstrates robustness,
showing minimal performance variation with different loss
weights, a.

I. Limitation and future work

As shown in Tab. 2 of the main paper, in regions unmatched
with small displacements (s0-40), a slight performance de-
cline compared to the original model is observed. We be-
lieve that this performance drop may stem from our pro-
posed method of prioritizing matched regions and large
displacements, particularly in the KD loss. However, this
trade-off is considered marginal compared torall perfor-
mance gains. Addressing this learning bias represents a lim-
itation of our work and an avenue for future research.
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Figure A. Qualitative comparison on the test set of RelayFlow-4K. We present three examples with varying motion ranges. ‘Stat.” represents
the distribution of optical flow in each sample.



(a) Present image (b) Next image

(d) Depth map

(e) Match map (f) Distance map

Figure B. Sample data of RelayFlow-4K. All sample annotations and maps here is aligned with the present image.
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Figure C. Sample data of RelayFlow-4K. All sample annotations and maps here is aligned with the present image.
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Figure D. Sample data of RelayFlow-4K. All sample annotations and maps here is aligned with the present image.
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Figure E. Sample data of RelayFlow-4K. All sample annotations and maps here is aligned with the present image.
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