
Representing 3D Shapes with 64 Latent Vectors for 3D Diffusion Models

Supplementary Material

Sampling Decoding Full
VecSet (M = 512) 2.40 2.10 1.12

Ours (M = 64) 20.49 56.44 15.03
Ours (M = 32) 37.42 58.22 22.78

VecSet (M = 512) with MR 2.40 10.61 1.94
Ours (M = 64) with MR 20.67 162.85 18.34
Ours (M = 32) with MR 37.70 174.88 31.00

Table 8. Generation throughput (sample/s) at each step. ‘Sam-
pling’ denotes the latent generation, ‘Decoding’ denotes the latent-
to-fields decoding process, including both the decoder and the neu-
ral fields decoding, and ‘Full’ denotes the entire generation pro-
cess. ‘MR’ denotes the multi-resolution query points sampling
technique. The throughput is measured using a single RTX A6000
GPU with a batch size 64.

A. Additional discussion

A.1. Improved query points sampling
As discussed in the main paper, we follow VecSet [17] and
adopt a naive query point sampling approach, which em-
ploys a single-resolution test grid and evaluates all points
within it. This results in an enormous number of query point
evaluations. While our triplane-based neural field decoding
significantly reduces computational overhead in the query
decoding process, the excessive number of query points of-
ten hinders maximizing the generation throughput.

The overall throughput can be further accelerated by
adopting an improved query points sampling technique. We
can employ a simple multi-resolution query point sampling
strategy, similar to the method proposed in [8]. For instance,
in the case of a 1283 test grid, we first use coarse-level
points from a 643 grid to identify occupied and empty re-
gions. Based on this coarse-level evaluation, we then eval-
uate finer-level points (1283) only within occupied voxels.

As shown in Table 8, this strategy reduces unnecessary
computations, leading to further acceleration in the neural
field decoding process. We can boost up our model with
M = 32 by alleviating the bottleneck in the neural fields de-
coding process, thereby maximizing its throughput. While
the same sampling technique can also be applied to VecSet
(M = 512), its computationally intensive sampling proce-
dures impose a substantial overhead, limiting the efficiency
gains in the generation process. Notably, this method can
be implemented as batch-wise computations by using an ap-
propriate zero-padding.

A.2. Reducing latent vectors and generation
As shown in Tab. 3 in the main paper, compact latent vectors
not only improve efficiency but also lead to better genera-

Speed (iter/s)↑ Memory (GB)↓ Params.↓
VecSet (M = 512) 2.98 13.40 113M

Ours (M = 64) 3.02 15.64 187M
Ours (M = 32) 3.18 14.81 187M

Table 9. Training efficiency analysis. We analyze the efficiency
of VAEs on ShapeNet, without the two-stage training strategy for
a clear comparison.

tion performance in all metrics except MMD. We attribute
this to the fact that a smaller total latent size simplifies the
training of diffusion models, thereby enhancing overall gen-
eration quality. Specifically, employing more latent vectors
allows each vector to cover a smaller region, resulting in
higher fidelity (MMD) of VecSet (M = 512). However,
this comes at a cost of a larger total latent size, making dif-
fusion models more challenging to model and resulting in
degraded performance on all other metrics. This results in
degraded performance of VecSet with M = 512 across all
other metrics. While more latent vectors may offer better
higher fidelity, they also impose a greater burden on the dif-
fusion model to capture the full distribution. Similarly, re-
cent diffusion models also employ VAEs for latents with a
small channel dimension to make the total latent size small.

A.3. Future extension of COD-VAE
Integration with VecSet-based methods. Recently,
many feed-forward 3D diffusion models have extended the
VecSet pipeline with various improvements. GaussianAny-
thing [14] introduces a Gaussian-based decoder and adopts
FPS-based 1D latent vectors, similar to those used in
VecSet. Dora [3] addresses the issue of uniform point
sampling in VecSet by proposing a sharp-edge sampling
strategy, which better captures regions with complex
geometry. Since COD-VAE also builds upon the VecSet
framework, we believe our model can naturally benefit
from these recent advances.

Towards textured mesh reconstruction. While this
work follows the experimental setups of VecSet and only
reconstructs shapes of the objects, extending our model to
generate textured meshes can be an interesting future di-
rection. This can possibly be accomplished by employing
multi-view diffusion models to generate materials and tex-
tures [18], training VAE with an additional rendering loss
[7, 14], or employing Gaussian-based VAE decoder [14].

B. VAE efficiency analysis
We present the training efficiency analysis of VAEs in Ta-
ble 9. While our model with M = 64 achieves a compara-

Encoder Decoder Fields decoding
VecSet (M = 512) 0.02 0.27 13.60

Ours (M = 64) 0.30 0.10 0.46
Ours (M = 32) 0.30 0.08 0.46

Table 10. Runtime breakdown of VAEs. We report the latency
(s) with a batch size 64.

ble training speed to VecSet, it requires slightly more GPU
memory (1.16×). Additionally, the total parameter count
increases by a factor of 1.65. These increases in memory us-
age and parameter count can be viewed as the trade-offs for
achieving improved generative efficiency. Although VAEs
are less frequently trained compared to generative models
in practice, we believe that reducing these costs remains an
interesting direction for future research.

We also provide a runtime breakdown of the inference
of VAEs in Table 10. Our models demonstrate greater effi-
ciency in the decoder and the neural fields decoding. How-
ever, the computational cost of the encoder is higher com-
pared to VecSet, as VecSet employs a lightweight encoder
consisting of a single cross-attention layer. Considering that
the forward computation of the encoder is usually included
in the generative model training, reducing the computations
of the encoder can further accelerate the training of genera-
tive models, which we leave for future works.

C. Method details

In this section, we provide further details of our COD-VAE
architecture design. We provide details of each component
in the following paragraphs.

Encoder. For the initial positions of the compact vectors
F , we follow VecSet [17] and adopt input-dependent po-
sitions, sampled from the input point cloud. We note that
our method can also incorporate learnable positional em-
beddings, similar to VecSet. To encode point features, as
well as the positions of point patches and compact vectors,
we utilize a shared positional embedding function. The po-
sitional embedding function follows the design used in Vec-
Set, which comprises learnable weights and a linear layer.
When processing point patches with self-attention layers,
we introduce an additional CLS token, following [13], to
aggregate global information. After the last encoder block,
we additionally apply one cross-attention layer to further
project high-resolution features into compact latent vectors.
We use the KL block design commonly used in 2D genera-
tive models, which is also employed in VecSet.

Decoder. After pruning, the remaining tokens are pro-
cessed using ViT-style transformer blocks. In this stage, we
aggregate the pruned tokens into 8 merged tokens via cross-
attention and concatenate them with the input sequence to

leverage additional information effectively. To reconstruct
the full triplanes, we first linearly project the initial triplane
tokens into dense triplane features. The processed tokens
are then linearly projected and scattered into the dense tri-
planes. Finally, we apply a sigmoid activation to the uncer-
tainty values to compute importance scores, which are mul-
tiplied with the scattered triplane features. The final triplane
features are obtained by adding these weighted features to
the initial dense triplane features.

D. Training objective
First stage. In the first stage training, we train the autoen-
coder model to minimize the reconstruction loss. Similar to
VecSet, the reconstruction loss computed as binary cross
entropy between the final occupancy predictions and the
ground truth:

L̃recon = Eq∈Qvol
[BCE(o(q), ô(q))]

+ 0.1 · Eq∈Qnear
[BCE(o(q), ô(q))] ,

(8)

where o(q) is the predicted occupancy using the final tri-
plane features, and ô(q) is the corresponding ground truth
occupancy. The training objective of the first stage can be
expressed as

Lae = L̃recon + Lrecon + λunc · Lunc, (9)

where Lrecon is the reconstruction loss computed using
the initial triplane tokens, and Lunc is the loss for train-
ing the uncertainty head. Both losses follow the procedure
described in the main paper. To properly train the uncer-
tainty head, we clip the initial query-wise reconstruction
loss Lrecon(q), computed using the initial triplane features,
to be in a range [0, 1].

Second stage. In the second stage VAE training, we
freeze the autoencoder components and train the KL block
and the latent decoder. The training objective of the second
stage consists of the MSE loss between the features with
two regularization terms:

Lvae = MSE(n(F̂), n(F)) + Lae + λkl · Lkl, (10)

where n(·) is a layer-wise normalization [1] without affine
operations. This normalization can be applied since our de-
coder only consists of transformer layers, which normalize
the input features before processing. Note that only the KL
block and the latent decoder are trained in the second stage.

E. Experimental setup details
E.1. Additional implementation details
We set the channel dimension of the transformer 512 with 8
heads in all components. Our models and training pipelines

View 0 View 1 View 2 View 3 View 4

View 5 View 6 View 7 View 8 View 9

View 10 View 11 View 12 View 13 View 14

View 15 View 16 View 17 View 18 View 19

Figure 9. Example visualizations of 20 rendered images, used
for computing Rendering-FID. The image resolution is 299×299.

are implemented using the PyTorch framework. For the
ShapeNet experiments, we use the AdamW optimizer with
a learning rate 1e-4, weight decay 0.01, and the effective
batch size 256 to train the autoencoders and 1024 to train
the VAEs. In the second stage, the learning rate is decayed
by 0.5 after 960, 1120, 1280, 1440 epochs. For the Obja-
verse experiments, we use the same configurations for the
first stage, and we decay the learning rate after 120, 140,
160, 180 epochs. We set λunc = 0.01 and λkl = 0.001.
We use the automatic mixed precision (AMP) and the flash
attention [5] built in for the PyTorch framework, which are
disable when measuring the efficiency of our method for
precise evaluations. While we do not manually align orien-
tations of objects and do not apply rotation augmentations,
our model could be improved by applying random rota-
tion augmentations – particularly on the Objaverse dataset,
which includes objects with inconsistent orientations.

E.2. Evaluation protocols
In our experiments, we follow the commonly used evalua-
tion protocols from SDF-StyleGAN [19] and VecSet [17] as
described in the main paper.

For reconstruction experiments, we measure Chamfer
Distance (CD), volumetric Intersection-over-Union (IoU)
and F-score (F1) computed using the chamfer distance. We
use the threshold 0.02 to compute F1 for ShapeNet, while
we slightly increase the threshold to 0.05 for Objaverse, as
the Objaverse dataset comprises more complicated objects.

To evaluate the generation performance, we employ
the FID-based scores as our main metrics, which are
Rendering-FID and Surface-FPD. We note that these FID-
based metrics are wide in more recent research [12, 15–
17, 19], as it can better take human perception into consid-
eration [19]. For Rendering-FID, we first normalize the sur-

Method Freeze IoU (%)↑ CD↓ F1 (%)↑
PerceiverIO (FPS query) ✓ 91.7 0.018 93.4

PerceiverIO (learnable query) ✓ 92.5 0.017 94.6
PerceiverIO (learnable query) 94.0 0.015 96.1

Ours (M = 32) 96.1 0.012 98.0

Table 11. Results of PerceiverIO with M = 32 and pretrained
VecSet (M = 512) on ShapeNet. We also report variants with
frozen VecSet, and with learnable queries replaced by FPS as used
in VecSet. Results of autoencoders are reported.

face mesh to a unit sphere and then render shading images
from 20 uniformly distributed views (see Figure 9). To mea-
sure Surface-FPD, we sample 4,096 points from the mesh
surface and then feed them into pretrained PointNet++ [9]
to extract global feature vectors. This PointNet++ network
is pretrained on ShapeNet-v2 for shape classification. using
the same train/valid/test split as in our experiments.

We also measure additional metrics, MMD, COV, 1-
NNA, computed using Chamfer distance (CD) and Earth
Mover’s distance (EMD) [10]. To evaluate generation per-
formance, we use Coverage (COV), Minimum Matching
Distance (MMD), 1-Nearest Neighbor Accuracy (1-NNA).
To compute these metrics, we compute the pairwise dis-
tances between the generated set Sg and the reference set
Sr. We compute COV and MMD by using the test test as
Sr, and generate 5|Sr| shapes as Sg . To compute 1-NNA,
we set |Sg| = |Sr|. For these metrics, we sample 2,048
points from the surface of each mesh.

For category-conditioned generation, we generate 2,000
objects per category for evaluation. The test set distribution
is as follows: airplane (202), car (175), chair (338), table
(421), rifle (118). For COV and MMD, we sample from the
generated objects per category: airplane (1,010), car (875),
chair (1,690), table (2,000), and rifle (590). For Rendering-
FID and Surface-FPD, 2000 objects are sampled from the
training set and compared with the generated objects.

To evaluate efficiency, we measure throughput on a sin-
gle A6000 GPU. The batch size is adjusted to maximize
GPU utilization, based on the model with the highest GPU
memory consumption.

F. Additional experiments and results

F.1. Comparison with PerceiverIO

To validate the compression capability of our method, we
compare it with PerceiverIO [6], which is trained to com-
press the original latent space of VecSet. Specifically, Per-
ceiverIO takes the latent vectors from the decoder of a pre-
trained VecSet as input and outputs compressed latent vec-
tors. The remaining architecture of this model (i.e., decoder,
neural fields decoding) follows the VecSet pipeline. We
also evaluate several variants: one with the frozen VecSet,
and another that uses FPS-based queries instead of learnable

VecSet M = 32 M = 64 M = 512 Ours (M = 64)
Surface-IoU (%)↑ 72.7 78.0 87.8 88.0

Pruning ratio 0% 50% 75% 90%
Surface-IoU (%)↑ 87.9 87.8 87.6 87.1

Table 12. Near-surface reconstruction results on ShapeNet. To
better assess the quality of reconstructed surfaces, we measure IoU
using 50K points sampled near object surfaces. (top) VAE com-
parisons with VecSet. (bottom) Ablation results on the pruning
ratio, obtained using autoencoders with M = 32.

idx 610 184

VecSet (M=512) Ours (M=64)Ground Truth

Figure 10. Failure cases of our model and VecSet (M = 512).
We report the results of the autoencoders.

queries, following the design of VecSet.
As shown in Table 11, our model outperforms several

variants of PerceiverIO by a large margin. These results
indicate that existing latent compression methods, primar-
ily explored in the 2D computer vision and NLP domains,
require careful considerations in architecture design to ef-
fectively process 3D modality.

F.2. Near-surface reconstruction results

We additionally provide near-surface reconstruction IoU
(Surface IoU) to better assess the quality of reconstructed
surfaces. As reported in Table 12, our VAE with M = 64
achieves comparable performance in near-surface regions
to VecSet with M = 512. In addition, while pruning up to
75% results in only a minor drop, we observe a more notice-
able degradation in shape details beyond this ratio. Based
on this trade-off, we set the pruning ratio to 75% to bal-
ance efficiency and quality (see Tab. 6 of the main paper for
efficiency gains).

F.3. Failure cases

Since our model employs a training strategy similar with
VecSet, it shares similar failure cases with VecSet using 512
latent vectors. As presented in Figure 10, both our model
and VecSet struggles to model extremely thin structures of
the objects, often producing over-smooth surfaces. This can
be addressed by improving the points sampling strategy for
both query points and point patches, such as sharp edge
sampling proposed in [3].

IoU (%)↑ CD↓ F1 (%)↑
Ours (M = 16) 95.6 0.013 97.8
Ours (M = 32) 96.1 0.012 98.0
Ours (M = 64) 96.5 0.012 98.2

Ours (M = 128) 96.7 0.012 98.2
Learnable positions 96.0 0.012 98.0

Input-dependent positions 96.1 0.012 98.0
Single-stage training 94.4 0.014 97.1
Two-stage training 96.1 0.012 98.0

Confidence [11] based uncertainty 95.3 0.015 97.1
Recon. based uncertainty 96.1 0.012 98.0

Table 13. Additional ablation results on ShapeNet. Top-to-
bottom: ablation results on the number of latent vectors, results
with the learnable latent positions, results without two-stage train-
ing, and results with the confidence-based training objective for
the uncertainty head.

F.4. Text-conditioned generation
We further evaluate the generation performance of our
model on text-conditioned 3D object generation. To en-
hance quality, we train the VAE with 128 latent vectors,
incorporate two additional layers before the uncertainty-
guided pruning module in the decoder, and add a convo-
lutional refinement layer after triplane reconstruction. We
also filter out low-quality objects (those with too few oc-
cupied points) from the training dataset. Following [14],
we use the captions provided in [4] and extract text embed-
dings using CLIP. The diffusion model is trained on approx-
imately 20K objects, and evaluation is performed on unseen
captions randomly selected from the validation set.

As shown in Figure 11, our model generates high-quality
objects using only 128 latent vectors, while existing meth-
ods typically require significantly more. Note that the com-
pared methods are trained with different dataset sizes and
are designed to generate colored meshes, making direct
comparisons difficult. Our model may also benefit from
larger-scale training to improve prompt-following ability.
Nevertheless, we highlight that our approach can achieve
high-quality generation with greater efficiency.

F.5. Additional ablation study
We further explore the behaviors of our method through the
additional ablation studies. Consistent with the main paper,
all ablations are conducted using the autoencoder with M =
32 on ShapeNet [2].

The number of latent vectors. As shown in Table 13
(first group), the performance of our method improves as
the number of latent vectors increases. However, the per-
formance gain diminishes beyond a certain number of latent
vectors. This suggests that most of the essential information
can be effectively encoded with M = 32 or M = 64 latent
vectors, while additional vectors contribute only marginal
improvements beyond this point.

Pr
om

pt
3D

To
pi

a-
X

L
(M

=2
04

8)
L

N
3D

iff
(M

=7
68

)
G

au
ss

ia
nA

ny
th

in
g

(M
=7

68
)

A large, ornate metal
candelabra with a curved
design, intricate details,

and multiple candle
holders, standing on a

sturdy base

A small, handmade
wooden boat with a
traditional design,

curved bow and stern,
flat bottom

O
ur

s
(M

=1
28

)
A detailed and realistic 3D
model of a silver and gold
revolver with a cylindrical

shape, wooden grip,
and metallic barrel.

A large yellow and black
rectangular metal toolbox

with a hinged lid, two
handles on the top, and a
sleek and modern design.

A red and blue Super
Mario character figurine
in a jumping pose, with

arms outstretched.

A sleek and modern b
rown leather couch

with a curved backrest
and comfortable

seating area.

A small, red and white
mushroom toy or

decorative item with a
round shape, white cap,
and red stem, featuring

white dots on the surface.

Figure 11. Text-conditioned generation results. Results of competing methods are obtained using their official source codes and pre-
trained weights. We report mesh outputs of these methods without textures and colors.

Positions of the latent vectors. Our method can also em-
ploy learnable positional embeddings for the latent vec-
tors. As reported in Table 13 (second group), the model
with learnable latent positions achieves similar reconstruc-
tion quality with the model with input-dependent positions.
Since the learnable latent positions can provide orders of the
latent vectors, they can also be a useful option for the cases
where we need to model the latent vectors as a ordered se-
quence, e.g., autoregressive generation.

Two-stage training. We evaluate the two-stage training
scheme as presented in Table 13 (third group). The two-
stage training effectively improves the overall performance.
In contrast, single-stage training makes autoencoders learn
to compress both the number of latent vectors and along
the channel dimension. Additionally, training uncertainty
head with an auxiliary loss further complicates the training.
These complicated training objectives lead to a noticeable
performance drop. Therefore, we separate the autoencoder
training from the training of channel compression modules.

Uncertainty head objective. Finally, we replace the
training objective of the uncertainty head with the
confidence-based objective used in [11]. As shown in Ta-
ble 13 (fourth group), the model trained to predict recon-
struction errors achieves better performance. We attribute

this to the fact that training the uncertainty head with a more
explicit objective–namely, estimating the reconstruction er-
ror of each triplane token–is more effective than using a
confidence-based objective for token pruning.

F.6. Class-conditioned generation
We provide per-category evaluation results of the category-
conditioned generation in Table 14. We also present ad-
ditional qualitative generation results of all 5 categories in
Figures 12 and 13.

F.7. Additional reconstruction results
Finally, we provide additional qualitative reconstruction
results. Figure 14 presents reconstruction results on
ShapeNet, and Figure 15 presents reconstruction results on
Objaverse.

Method Airplane Car Chair Table Rifle

MMD-CD

3DILG 3.702 4.353 9.243 10.526 3.529
GEM3D 3.587 4.160 8.680 7.652 2.828

VecSet (M=32) 3.097 4.155 8.173 6.883 2.689
VecSet (M=64) 3.121 4.173 8.360 6.955 2.841

VecSet (M=512) 3.059 3.921 7.821 6.527 2.707
Ours (M=32) 3.275 4.054 8.067 6.885 2.820
Ours (M=64) 3.240 3.971 8.465 6.695 2.755

MMD-EMD

3DILG 9.04 10.28 13.35 13.46 8.78
GEM3D 8.75 9.62 13.12 11.91 8.67

VecSet (M=32) 8.88 10.18 13.12 11.71 8.29
VecSet (M=64) 8.82 10.02 13.04 11.84 8.71

VecSet (M=512) 8.64 9.78 12.69 11.55 8.40
Ours (M=32) 8.79 9.84 13.01 11.76 8.52
Ours (M=64) 8.71 9.83 13.09 11.59 8.66

COV-CD

3DILG 67.33 41.71 70.41 46.08 65.25
GEM3D 74.26 49.71 68.93 75.06 65.25

VecSet (M=32) 88.12 74.29 88.76 90.02 81.36
VecSet (M=64) 86.14 76.57 85.50 88.12 88.14

VecSet (M=512) 85.15 76.00 87.28 88.60 88.98
Ours (M=32) 84.65 77.71 87.28 87.89 87.29
Ours (M=64) 84.16 79.43 84.32 90.74 91.53

COV-EMD

3DILG 72.77 41.71 76.33 52.02 71.19
GEM3D 73.27 58.86 64.2 74.58 59.32

VecSet (M=32) 85.64 60.57 89.05 91.69 87.29
VecSet (M=64) 90.1 65.71 84.91 91.69 89.83

VecSet (M=512) 88.61 63.43 85.8 89.55 91.53
Ours (M=32) 86.14 69.71 89.05 89.79 86.44
Ours (M=64) 89.6 70.29 86.69 92.16 88.14

1-NNA-CD

3DILG 61.39 61.43 57.69 68.88 58.05
GEM3D 54.46 58.00 53.55 53.44 54.24

VecSet (M=32) 54.21 64.29 53.85 50.95 48.31
VecSet (M=64) 52.97 63.71 54.29 52.97 51.27

VecSet (M=512) 51.98 62.00 54.73 50.59 49.58
Ours (M=32) 53.71 60.00 52.07 50.59 49.15
Ours (M=64) 53.22 61.43 53.99 52.02 53.81

1-NNA-EMD

3DILG 55.69 60.57 58.73 66.86 57.63
GEM3D 52.72 59.43 56.21 56.65 55.08

VecSet (M=32) 56.93 63.14 52.96 52.02 48.73
VecSet (M=64) 51.98 62.29 52.96 53.68 53.81

VecSet (M=512) 53.96 61.71 53.7 52.14 53.81
Ours (M=32) 52.72 57.71 53.11 53.09 53.81
Ours (M=64) 53.96 60.57 52.22 51.07 52.54

Rendering-FID

3DILG 40.49 134.00 38.20 62.63 48.81
GEM3D 34.97 108.86 32.24 31.95 31.89

VecSet (M=32) 60.25 132.91 56.26 39.60 38.76
VecSet (M=64) 52.75 107.52 47.96 34.77 29.35

VecSet (M=512) 31.57 108.41 26.31 31.78 22.79
Ours (M=32) 33.57 79.91 27.65 26.89 18.67
Ours (M=64) 31.72 79.97 27.08 27.53 18.95

Surface-FPD

3DILG 1.13 4.82 1.45 2.55 2.97
GEM3D 0.82 1.05 0.99 1.02 1.13

VecSet (M=32) 0.39 2.51 0.39 0.29 0.42
VecSet (M=64) 0.27 1.87 0.41 0.29 0.31

VecSet (M=512) 0.26 1.27 0.36 0.31 0.41
Ours (M=32) 0.26 1.28 0.33 0.24 0.25
Ours (M=64) 0.25 1.21 0.34 0.26 0.24

Table 14. Class-conditioned generation results on ShapeNet. We report per-category evaluation results. The scales of MMD are 10−3,
and 10−2 for CD, and EMD, respectively.

Ve
cS

et
(M

=6
4)

O
ur

s
(M

=6
4)

Ve
cS

et
(M

=5
12

)

Car

O
ur

s
(M

=6
4)

Ve
cS

et
(M

=6
4)

Ve
cS

et
(M

=5
12

)

Chair

Table

Ve
cS

et
(M

=6
4)

Ve
cS

et
(M

=5
12

)
O

ur
s

(M
=6

4)

Figure 12. Additional class-conditioned generation results. We present the generated results of car, chair, and table.

Airplane

O
ur

s
(M

=6
4)

Ve
cS

et
(M

=6
4)

Ve
cS

et
(M

=5
12

)

Rifle

O
ur

s
(M

=6
4)

Ve
cS

et
(M

=6
4)

Ve
cS

et
(M

=5
12

)

Figure 13. Additional class-conditioned generation results. We present the generated results of airplane and rifle.

1657 391 2217 1606 1960

bottom 47.8

O
ur

s
(M

=6
4)

Ve
cS

et
(M

=6
4)

Ve
cS

et
(M

=5
12

)
G

ro
un

d
Tr

ut
h

Figure 14. Additional reconstruction results on ShapeNet. We present the reconstruction results of VAEs.

O
ur

s
(M

=6
4)

G
ro

un
d

Tr
ut

h
Ve

cS
et

(M
=6

4)
Ve

cS
et

(M
=1

02
4)

Figure 15. Additional reconstruction results on Objaverse. We present the reconstruction results of VAEs.

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 2

[2] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 4

[3] Rui Chen, Jianfeng Zhang, Yixun Liang, Guan Luo, Weiyu
Li, Jiarui Liu, Xiu Li, Xiaoxiao Long, Jiashi Feng, and
Ping Tan. Dora: Sampling and benchmarking for 3d shape
variational auto-encoders. arXiv preprint arXiv:2412.17808,
2024. 1, 4

[4] Zhaoxi Chen, Jiaxiang Tang, Yuhao Dong, Ziang Cao,
Fangzhou Hong, Yushi Lan, Tengfei Wang, Haozhe Xie,
Tong Wu, Shunsuke Saito, et al. 3dtopia-xl: Scaling high-
quality 3d asset generation via primitive diffusion. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 26576–26586, 2025.
4

[5] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christo-
pher Ré. Flashattention: Fast and memory-efficient exact
attention with io-awareness. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 35:16344–16359, 2022.
3

[6] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac,
Carl Doersch, Catalin Ionescu, David Ding, Skanda Kop-
pula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al.
Perceiver io: A general architecture for structured inputs &
outputs. In International Conference on Learning Represen-
tations (ICLR), 2022. 3

[7] Yushi Lan, Fangzhou Hong, Shuai Yang, Shangchen Zhou,
Xuyi Meng, Bo Dai, Xingang Pan, and Chen Change Loy.
Ln3diff: Scalable latent neural fields diffusion for speedy 3d
generation. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 112–130. Springer, 2024. 1

[8] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4460–4470, 2019. 1

[9] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017. 3

[10] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The
earth mover’s distance as a metric for image retrieval. In-
ternational Journal of Computer Vision (IJCV), 40:99–121,
2000. 3

[11] Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris
Chidlovskii, and Jerome Revaud. Dust3r: Geometric 3d vi-
sion made easy. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
20697–20709, 2024. 4, 5

[12] Bojun Xiong, Si-Tong Wei, Xin-Yang Zheng, Yan-Pei Cao,
Zhouhui Lian, and Peng-Shuai Wang. Octfusion: Octree-

based diffusion models for 3d shape generation. arXiv
preprint arXiv:2408.14732, 2024. 3

[13] Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen,
Daniel Cremers, and Liang-Chieh Chen. An image is worth
32 tokens for reconstruction and generation. arXiv preprint
arXiv:2406.07550, 2024. 2

[14] LAN Yushi, Shangchen Zhou, Zhaoyang Lyu, Fangzhou
Hong, Shuai Yang, Bo Dai, Xingang Pan, and Chen Change
Loy. Gaussiananything: Interactive point cloud flow match-
ing for 3d generation. In International Conference on Learn-
ing Representations (ICLR), 2025. 1, 4

[15] Biao Zhang and Peter Wonka. Lagem: A large geometry
model for 3d representation learning and diffusion. arXiv
preprint arXiv:2410.01295, 2024. 3

[16] Biao Zhang, Matthias Nießner, and Peter Wonka. 3dilg: Ir-
regular latent grids for 3d generative modeling. Advances
in Neural Information Processing Systems (NeurIPS), 35:
21871–21885, 2022.

[17] Biao Zhang, Jiapeng Tang, Matthias Niessner, and Peter
Wonka. 3dshape2vecset: A 3d shape representation for neu-
ral fields and generative diffusion models. ACM Transactions
on Graphics (TOG), 42(4):1–16, 2023. 1, 2, 3

[18] Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu,
Anqi Pang, Haoran Jiang, Wei Yang, Lan Xu, and Jingyi Yu.
Clay: A controllable large-scale generative model for creat-
ing high-quality 3d assets. ACM Transactions on Graphics
(TOG), 43(4):1–20, 2024. 1

[19] Xinyang Zheng, Yang Liu, Pengshuai Wang, and Xin Tong.
Sdf-stylegan: implicit sdf-based stylegan for 3d shape gen-
eration. In Computer Graphics Forum, pages 52–63. Wiley
Online Library, 2022. 3

	Additional discussion
	Improved query points sampling
	Reducing latent vectors and generation
	Future extension of COD-VAE

	VAE efficiency analysis
	Method details
	Training objective
	Experimental setup details
	Additional implementation details
	Evaluation protocols

	Additional experiments and results
	Comparison with PerceiverIO
	Near-surface reconstruction results
	Failure cases
	Text-conditioned generation
	Additional ablation study
	Class-conditioned generation
	Additional reconstruction results

