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1. Details on Imaging System
Lighting Module For our display module, we employ a commercially available large curved LCD monitor (Samsung
Odyssey Ark). This display features a 55-inch liquid-crystal panel with a resolution of 2160×3840 pixels and a peak bright-
ness of 600 cd/m2. Owing to the polarization-sensitive optical components inherent in LCD technology, each pixel emits
horizontally linearly-polarized light spanning the trichromatic RGB spectrum.

Capture Module We further utilize two polarization camera (FLIR BFS-U3-51S5PC-C) that integrates on-sensor linear
polarization filters oriented at four distinct angles. Consequently, the camera records four polarized light intensities at 0◦, 45◦,
90◦, and 135◦, denoted as I0◦ , I45◦ , I90◦ , and I135◦ , respectively. The sensor captures a linear raw signal, to which we apply
a series of linear image processing steps, including black level subtraction, demosaicing, and undistortion. All images in the
dataset were captured using a fixed shutter time of 440 ms under a single-exposure setting. As a cost-effective alternative to a
high-end polarization camera, one may adopt a conventional camera augmented with a linear-polarization film. Aligning the
film’s polarization axis perpendicular to that of the display facilitates the capture of diffuse image components.

Device Control To manage the display outputs and control the polarization camera, we employ the PyGame and PySpin
libraries, respectively. The devices are interfaced with a desktop computer via an HDMI cable and a USB3 connection, with
software synchronization ensuring coordinated operation between the display and the camera.

Radiometric Calibration The monitor’s emitted radiance does not exhibit a linear correlation with the pixel values of the
display pattern. To correct for this nonlinearity, we capture images of gray patches on a color checker across various intensity
levels. An exponential function is then fitted to the measured intensities as a function of the monitor’s pixel values for each
individual color channel.
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Light attenuation calibration To calibrate the light attenuation effect as a function of the distance between the object and
the light source, a color checker was positioned in front of the imaging system and an OLAT image was captured as shown
in Figure S1.(a). For each light position, the brightness variation of the color patches is measured, and the parameters a, b,
and c in the following equation are fitted:

1

a+ b× distance2
+ c (1)

(a) Captured color checker (b) All patches' intensity curve & fitted curve (purple)

(c) Each patch's intensity curve (orange) & fitted curve (blue)
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Figure S1. Light fall-off calibration. The parameters are fitted by analyzing the variation in pixel intensity as a function of the distance to
the light source.

Figure S1. (b) and (c) shows curves fitted to captured intensity variation.

2. Details on Scan System
We employed the EinScan SP V2 scanner to acquire mesh data of three-dimensional objects. The EinScan SP V2 is a
structured light active stereo imaging device that scans objects placed on a turntable. Device calibration is performed by
positioning a checkerboard on the turntable. During a single rotation, eight images are captured to generate data points, which
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Figure S2. EinScan SP V2. An object is placed on turntable, and the scanner is looking at the object.

are then registered to reconstruct the object’s geometry. The system maintains an accuracy within a tolerance of 0.05 mm.
The scan scenario is shown in Figure S2.

Mesh-raster alignment The scanned mesh is aligned with the captured images to extract the ground truth depth map,
normal map, and mask. The registration between the images and the mesh is performed in a semi-automatic and semi-manual
manner using the mutual information methods [7] available in MeshLab. The mesh pose obtained through this alignment is
then imported into the differentiable renderer, Mitsuba3, to render the depth map, normal map, and mask.
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Figure S3. Data statistics. We conducted a statistical analysis of 16 objects based on two aspects: their material properties and surface
reflectance characteristics.

3. Dataset
Comparison with Existing datasets. Table S1 presents the existing inverse rendering datasets. Some of these datasets
were originally developed for photometric stereo, yet they have also been widely adopted for inverse rendering. Each dataset
exhibits unique characteristics based on whether ground truth geometry is provided, the type of illumination and imaging
system used, the available lighting calibration information, the number of captured objects, the number of views, and the
number of light sources employed. These factors determine the suitability of each dataset for different research settings.

Our dataset is specifically designed for inverse rendering in a display-camera system. It provides ground truth geometry
obtained via scanning, three-dimensional position information for a total of 144 superpixels from an LCD monitor, and



Dataset Ground-truth Imaging Lighting Number of Number of Number of
geometry system calibration objects views lights

Blobby and Sculpture [3] ✓ Synthetic Direction 18 1 64
CyclePS [11] ✓ Synthetic Direction 45 1 1300
PS-Wild [12] ✓ Synthetic ✗ 410 1 10
Gourd and Apple [1] ✗ Light rig Direction 3 1 112
Harvard [28] ✗ Light rig Direction 7 1 20
DTU [14] ✓ Robot ✗ 80 64 7
MIT-intrinsic [8] ✗ Commodity camera ✗ 20 1 10
NeROIC [15] ✗ Commodity camera Env. map 3 40 6
NeRF-OSR [24] ✗ Commodity camera Env. map 8 3240 110
Stanford ORB [16] ✓ Commodity camera Env. map 14 70 7
ReNe [26] ✗ Robot Position 20 50 40
Light Stage Data Gallery [2] ✗ Light stage Direction 9 1 253
Open Illumination [20] ✗ Light stage Position 64 72 154
Polar-lightstage [29] Pseudo Light stage Direction 26 8 346
LUCES [21] ✓ Light rig Position 14 1 52
DiLiGenT [25] ✓ Light rig Position 10 1 96
DiLiGenT102 [23] ✓ Gantry Direction 100 1 100
DiLiGenT-PI [27] ✓ Gantry Direction 34 1 100
DiLiGenRT [9] ✓ Gantry Direction 54 1 100
DiLiGenTMV [18] ✓ Studio/desktop scanner Direction 5 20 96
Ours ✓ Display and camera Position 16 2 144

Table S1. Inverse rendering datasets. We classified the datasets related to inverse rendering into their respective categories and organized
them into a table.

stereo views of 16 objects. The stereo camera system is comprised of a polarization camera, which enables the capture of
polarization information of the objects. Figure S3 shows the statistics of our dataset’s material. In dataset described in this
paper, objects are placed at 50 cm from the cameras, we will release additional scene with an object which are placed at
multiple distances.

4. Additional Details on the Proposed Baseline Model
In this section, we introduce a simple yet effective baseline model for display-based inverse rendering. The proposed model
is designed to handle input images captured under M arbitrary display patterns with intrinsic backlighting, while addressing
the challenges posed by limited angular sampling and modeling the effects of near-field lighting.

Initialization In the initialization step, we estimate surface normals n using analytical photometric stereo [4], which op-
erates on M multiplexed images. A depth map is then estimated using RAFT-Stereo [19], applied to the average of stereo
image pairs captured under multiple patterns. Given this initial geometry, we proceed to optimize the per-pixel reflectance
and normal map.
Image Formation When a scene point is illuminated by a display pattern L, the observed image intensity is modeled as:

I = clip

(
N∑
i=1

(n · i)f(i,o)Li

d2i
+ ϵ

)
, (2)

where Li denotes the RGB intensity of the i-th superpixel composing the display pattern L = {L1, . . . , LN}, f is the BRDF,
n is the surface normal, i is the incident direction from the i-th superpixel, o is the outgoing view direction, and di is the
distance between the i-th superpixel and the scene point. The function clip(·) accounts for camera dynamic range clipping,
and ϵ models Gaussian noise.



Simulation for Arbitrary Display Patterns To simulate the image under an arbitrary display pattern P = {P1, · · · , PN}
based on the equation 2, we model the i-th display superpixel intensity given the corresponding RGB pattern value we set to
display Pi as

Li = s(Pi +Bi)
γ , (3)

where s is a global scalar, γ is the non-linear mapping exponent, and Bi is the corresponding spatially-varying backlight
intensity. Then, a scene illuminated by an arbitrary display patten can be described, using Equation (2) and Equation (3), as:

I (P) = clip

(
N∑
i=1

Iis(Pi +Bi)
γ + ϵ

)
, (4)

where Pi is the display superpixel RGB value, Ii is the captured image under the i-th OLAT illumination. The standard
deviation of the Gaussian noise ϵ can be adjusted to reflect different noise levels. We represent the captured or rendered
image under the i-th OLAT illumination, Ii as:

Ii = f(i,o)(n · i) 1
d2i

(5)

For modeling near-field effects, spatially-varying lighting direction i and spatially-varying intensity falloff scalar 1
d2
i

are
computed by using calibrated superpixel positions and a depth map estimated in initialization step.

Reflectance Model Limited angular sampling in display-camera systems presents challenges for accurate reflectance esti-
mation. Following previous approaches [5, 17, 22], we adopt a basis BRDF representation to regularize the underdetermined
nature of the problem. Specifically, we model the SVBRDF as a weighted sum of J basis BRDFs.

Let wj denote the coefficient for the j-th basis BRDF. The overall SVBRDF f is expressed as:

f(i,o) =

J∑
j=1

wjfj(i,o). (6)

Each basis BRDF fj is parameterized by a diffuse albedo ρdj ∈ R3, roughness σj ∈ R3, and specular albedo ρsj ∈ R3,
using the Cook-Torrance reflectance model [6]:

fj(i,o) = ρdj + ρsj
D(h;σj)F (o,h)G(i,o,n;σj)

4(n · i)(n · o)
, (7)

where h is the half-vector between i and o, D is the normal distribution function, F is the Fresnel term, and G is the geometric
attenuation factor.

Optimization At the initialization stage, we performed photometric stereo to estimate surface normals and obtain a pseudo
diffuse image. In the HSV color space, we apply K-means clustering on the hue and saturation channels of this pseudo
diffuse image to obtain J clusters. Each cluster is converted into a one-hot encoded representation, which serves as an initial
estimate of J weight maps. The centroid color of each cluster is assigned as the diffuse albedo of a basis BRDF, initializing
the corresponding coefficient. Both roughness and specular albedo are uniformly initialized to 0.5.

We then iteratively optimize the per-pixel surface normals, basis coefficients, and basis BRDFs by minimizing the RMSE
loss between the M captured images and the corresponding rendered images. To mitigate noisy per-pixel updates, we incor-
porate a total-variation (TV) regularization term during optimization.

5. Additional Experiments
Comparison with Feed-forward Inverse Rendering Models Figure S4 shows additional results for transformer-based
SDM-UniPS [13] and diffusion-based Neural LightRig [10]. These learned methods show lower-quality results compared to
our baseline.

Environmental Relighting The optimized scene representation enables relighting under a novel environment map as
shown in Fig. S5.



GT Our baseline SDM-UniPSNeural LightRig

PSNR 39.33 27.3927.20

Figure S4. Evaluation of learned methods.

Figure S5. Relighting results with an environment map.

Robustness of Camera Positional Errors Our method is robust to camera positional error, obtaining relighting PSNR
38.74 and normal MAE 28.26 for the 5 cm-displaced camera position.

Robustness without Stereo Imaging Even without stereo imaging, our baseline, using uniform depth, outperforms previ-
ous methods, with relighting PSNR 38.8 and normal MAE 28.29, as shown in Table 3. We clarify this explicitly for a fair
comparison.

Analysis of Display Backlight Figure S6 (a) and (b) show images of the display when the superpixel intensity is set to
1 (maximum) and 0.5 (half), respectively. The difference image shows that the backlight remains constant with different
intensities in signal inputs.

exposure: 
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(b) Intensity: 0.5 (Half) (a) - (b)(a) Intensity: 1 (Max)

Figure S6. Backlight is invariant to super-pixel intensity: (a) 1 and (b) 0.5. The difference image shows consistent backlight. There is lens
flare around the saturated areas.

Analysis of Point-light Assumption as a Superpixel Assuming a superpixel as a point light source introduces a trade-off
between blurred reflectance and noise caused by limited exposure. Although the design choice in the baseline deviates from
the ideal point light assumption, Figure S7 demonstrates that the size of the superpixel has a minimal impact on the specular
lobe.
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Figure S7. Images of a glossy sphere with superpixels of different sizes. Numbers below indicate pixels per superpixel.

6. Photometric Stereo Results
The following are the surface normal reconstruction results for all the photometric stereo methods we evaluated.
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Figure S8. Reconstructed normal of evaluated methods. We visualize reconstructed normals of ELEPHANT, OWL, CAT, FROG, ROBOT,
PIG
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Figure S9. Reconstructed normal of evaluated methods. We visualize reconstructed normals of CHICKEN, GIRL BOY, NEFERTITI,
TREX
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Figure S10. Reconstructed normal of evaluated methods. We visualize reconstructed normals of GNOME HORSE, SNOWMAN, PLAS-
TER, OBJET
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