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A. Dataset Details
CMU Panoptic Studio CMU Panoptic Studio dataset
contains dynamic sequences of human movement from 31
cameras surrounding the scene. We take subsequences from
sports and office sequence and make new dataset containing
five independent scenes BASEBALL, TENNIS, OFFICE1,
OFFICE2, and OFFICE3. There is one human in the scenes
in Panoptic Studio dataset we used. Each multi-view train-
ing video is 270 frames long at 30 FPS and starts from a
random global timestamp to make unsynchronized setup.
All video sequences are sampled to have at least 150 over-
lapping frames. Namely, maximum time offset between two
videos is 120 frames. We undistort all training images be-
fore estimating human motion and training dynamic NeRFs
with provided radial and tangential distortion parameters.

Mobile-Stage Mobile-Stage dataset from 4K4D contains
three dancers captured by multiple smartphone cameras
with frontal and side views. Some viewpoints have signifi-
cant occlusion, and not all people are visible in certain view-
points. The video lengths, FPS, and random global times-
tamp sampling strategy are identical to the setup in CMU
Panoptic Studio dataset. We use 20 cameras for training
and one camera for evaluation.

EgoBody EgoBody dataset contains dynamic interaction
between two humans that are captured from four (S22-
S21-02) or five (S32-S31-01 and S32-S31-02) static Kinect
cameras and one moving head-mounted HoloLens2 cam-
era. HoloLens2 camera has different camera intrinsic from
Kinect cameras and it has some missing frames. Also, there
are extreme motion blurred frames in HoloLens2 camera
videos. We estimate human pose for existing frame with
SLAHMR and estimate human pose for missing frames by
linear interpolation of 3D joint positions. Each multi-view
training video is 200 frames long. They have at least 90
overlapping frames, in other words, maximum time offset
between two videos is 110 frames.

B. Implementation Details
B.1. Training K-Planes
We use L=5 spatial grid resolutions [24, 48, 96, 192, 384]
for Mobile-Stage dataset and OFFICE1, OFFICE2, OF-
FICE3, and TENNIS scenes of CMU Panoptic Studio
dataset, and we use L=4 grid resolutions [48, 96, 192, 384]

for BASEBALL scene of CMU Panoptic Studio dataset. We
observe that BASEBALL scene converges well starting from
the resolution of 48. We use a single resolution, 240, for the
temporal grid in all scenes.

In addition to the weight scheduling described in the
main manuscript, we also schedule the weights of regular-
ization terms. We apply cosine scheduling that decreases
weights to 1/100 of its initial weights at the end of the
scheduling. We use weights 0.01 for distortion loss, 0.001
for L1 loss in time planes, 0.001 for total variance loss
in spatial planes, 0.01 for time smoothness loss, and 0.01
for density L1 loss. We start scheduling of regularization
from 100k steps for Mobile-Stage dataset and OFFICE1,
OFFICE2, OFFICE3, and TENNIS scenes of Panoptic Stu-
dio dataset, and 50k steps for BASEBALL scene of Panoptic
Studio dataset, and end scheduling at 150k steps.

For efficiency, we initialize feature values of finer grids
by bilinear interpolation of values from coarser grids.
Namely, we initialize finer grids Pc

l , (l > 1) at α = l − 1
with values interpolated from Pc

l−1, where α = L(eη −
1)/(e− 1), η ∈ [0, 1] is a normalized training step.

B.2. Global Alignment Algorithm
We provide detailed pseudocode of the global sequence
alignment of whole human motions for time offset estima-
tion in Algorithm 1.

B.3. Procrustes Alignment
As we describe in Eq. (7) in the main manuscript, we es-
timate similarity transform between two 3D joint positions.
We first estimate scale, translation, and rotation that align
target joint positions (Ji

global,t+∆ti ; t) to the reference joint
positions of anchor index α, (Jα

global,t+∆tα ; t) with Pro-
crustes analysis,

si, sα, ti, tα, R = PROCRUSTES((Ji
global,t+∆ti ; t),

(Jα
global,t+∆tα ; t)).

(1)

We describe details of the Procrustes analysis in Algo-
rithm 2. Then we can obtain camera poses in the global
coordinate (i.e., camera coordinate of anchor index) by ap-
plying estimated transformation to the camera poses in the
ith camera’s coordinate, Ri, τ i similar to line 3-7 in Algo-
rithm 3.

B.4. Evaluation Details
In this section, we provide additional details for evalua-
tion of our method. Since we only optimize camera poses



Algorithm 1: Global time offset alignment
Function GLOBAL ALIGN(C,∆T ):

Input : Cost matrix C ∈ RN×N ,
time offset matrix ∆T ∈ ZN×N

Output: Globally aligning time offsets ∆t ∈ ZN

1 Globally aligning time offsets ∆t = 0 ∈ ZN

2 Globally aligned index group G = ∅
3 Locally aligned index group list Gl = ∅
4 Index list I = {(i, j)|∀i < j}
5 I← SORT(I) ▷ increasing order w.r.t. Cij

6 (i, j)← I[0] ▷ anchor indices
7 ∆t[i]← 0,∆t[j]← ∆Tij

8 Insert (i, j) to G
9 for k = {1, · · · , N(N − 1)/2− 1} do

10 (i, j)← I[k]
11 if i ∈ G, j ∈ G then
12 continue
13 else if i ∈ G, j ∈ Gl[k],∃k then
14 Pop Gl[k] and add to G after shift ∆Tij

15 else if i ∈ G, j /∈ G, j /∈ Gl[k], ∀k then
16 Add j to G,∆t[j]← ∆t[i] + ∆Tij

17 else if i ∈ Gl[k], j /∈ G, j /∈ G[l], ∀l then
18 Add j to Gl[k], ∆t[j]← ∆t[i] + ∆Tij

19 else if i, j /∈ G, /∈ Gl[k], ∀k then
20 Add (i, j) to new group in Gl

21 ∆t[i]← 0,∆t[j]← ∆Tij

22 else if i ∈ Gl[k], j ∈ Gl[l] then
23 Pop Gl[l] and add to Gl[k] after shift ∆Tij

24 else if i, j ∈ Gl[k] then
25 continue
26 else
27 vice versa for reverse case of (i, j)

28 return ∆t

Algorithm 2: Procrustes analysis
Function PROCRUSTES(X,Y ):

Input : Point set to align X = {xi|xi ∈ R3}Ni=1,
Reference point set Y = {yi|yi ∈ R3}Ni=1

Output: scale sx, sy , translation tx, ty , rotation R

1 tx ←
∑

xi/N, ty ←
∑

yi/N

2 sx ←
√∑

∥xi − tx∥22/N
3 sy ←

√∑
∥yi − ty∥22/N

4 X̂ ← 1
sx

([xi]− tx)

5 Ŷ ← 1
sy

([yi]− ty)

6 U,Σ, V ∗ ← SVD(Ŷ X̂⊤)
7 R← UV ∗

8 return sx, sy, tx, ty, R

and time offsets of training videos, we do not have accu-
rate poses and time offsets of test videos in the coordinate
system that we are optimizing training camera poses and
time offsets. Therefore, we first transform ground-truth test
camera poses by aligning the ground-truth training cam-
era poses to the estimated training camera poses. Starting
from the transformed test camera poses, we further optimize

Algorithm 3: Align cameras
Function ALIGN CAM({Ri

est, τ
i
est}, {Ri

ref, τ
i
ref}):

Input : Estimated camera poses {Ri
est, τ

i
est},

Reference camera poses {Ri
ref, τ

i
ref}

Output: Aligned estimated camera poses {R̃i
est, τ̃

i
est}

1 Estimated camera centers oi
est ← −Ri⊤

est τ
i

2 Reference camera centers oi
ref ← −Ri⊤

ref τ
i

3 sest, sref, test, tref, R← PROCRUSTES({oi
est}, {oi

ref})
4 õi

est ← srefR( 1
sest

(oi
est − test)) + tiref

5 R̃i
est ← Ri

estR
⊤

6 τ̃ i
est ← −R̃i⊤

est õ
i
est

7 return R̃i
est, τ̃

i
est
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Figure 1. Visual illustration of estimated camera poses from our
initialization stage on EgoBody dataset. Red and blue frustums
are the ground-truth and estimated camera poses, respectively.
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Figure 2. Additional qualitative results on Mobile-Stage dataset.

camera poses while freezing NeRF parameters with super-
vision of test view video frames before measuring errors of
rendered images.

Since the estimated camera poses are up to 3D simi-
larity transformation (scale, rotation, and translation), we
align our estimated camera poses to the ground-truth train-
ing camera poses before measuring pose errors. Detailed
description of camera alignment procedures used in both
novel-view synthesis performance measurement and cam-



era pose accuracy can be found in Algorithm 3.

C. Additional Results
We additionally visualize both initialized and refined cam-
era poses in all of the scenes in EgoBody dataset in Fig. 1
and Panoptic Studio in Fig. 3. We can observe that our ini-
tialization step produces good initial points, and our joint
optimization with dynamic NeRF produces near-perfect
pose alignments across all scenes.

Furthermore, we show additional qualitative compar-
isons in Panoptic Studio dataset in Fig. 4 and Mobile-Stage
dataset in Fig. 2. We also provide videos rendered at the
test viewpoint in the supplementary material. We recom-
mend the readers to see the videos.
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Figure 3. We demonstrate camera pose estimation results of the initialization stage on Panoptic Studio datsaet at the top row (Initialization)
and the final results of the joint optimization with K-Planes at the bottom row (Refinement). Red frustums are the ground-truth camera
poses and blue frustums are the estimated camera poses.
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Figure 4. Additional qualitative comparison of novel view synthesis performance.
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