
OV-SCAN: Semantically Consistent Alignment for Novel Object Discovery in
Open-Vocabulary 3D Object Detection

Supplementary Material

6. Additional Implementation Details
6.1. Novel Object Proposals
OV-SCAN relies on Grounding DINO [21] and SAM [17]
to detect 2D proposals from a given list of (user-defined)
novel classes. Tab. 5 outlines the novel classes we used for
our experiments for both the nuScenes [2] and KITTI [12]
datasets. We adhere to the original taxonomy of each
dataset, except that “cyclist” is split into “bicycle” and “mo-
torcycle” for KITTI.

Table 5. Novel classes used to identify novel object propos-
als for each dataset. These classes are referred to as “novel”
since their ground truth labels, although available in the respec-
tive datasets, are not used in training OV-SCAN.

Dataset Novel Classes

nuScenes car, truck, pedestrian, bicycle, motorcycle, bus,
traffic cone, barrier block, construction vehicle

KITTI car, van, truck, tram, bicycle, motorcycle, pedes-
trian, person sitting

In post-processing, our method adopts a similar ap-
proach to UP-VL [30] for removing false positives. We
treat each novel class as a positive class while including a
set of background classes. To refine the results, we cross-
reference each image crop from Grounding DINO with
CLIP [33], filtering out background classes such as “vege-
tation”, “fence”, “gate”, “curb”, “sidewalk”, “wall”, “build-
ing”, “railing”, and “rail guard.”

6.2. Cross-Modal Association
As discussed in Sec. 3.2, the primary objective of cross-
modal association is to accurately pair each 2D proposal
with its corresponding 3D object cluster. Our detailed im-
plementation is outlined in Algorithm 1, where each 2D
proposal is first projected into a 3D frustum defined by
(dmin, dmax). Ideally, each proposal can then be matched
to the cluster containing the point closest to the center frus-
tum ray, provided this distance is within a matching thresh-
old ωmatch. However, challenges arise when a single 2D
proposal corresponds to multiple object clusters due to frag-
mentation from misclustering, partial occlusion, or sparsity.
To address this, we allow one-to-many matching, enabling
a single 2D proposal to generate multiple competing cross-
modal proposals. We resolve such conflicts during cross-
modal target preparation by optimizing 3D box parameters

for each candidate proposal, ultimately retaining the op-
timal proposal based on the objective defined in Eq. (1).
Additionally, we address scenarios involving many-to-one
matching, where larger objects (e.g., transit buses) span
multiple camera views. In these situations, applying 3D
NMS at the conclusion of cross-modal target preparation ef-
fectively resolves potential redundancies. Our conflict res-
olution strategy is detailed in Algorithm 2.

Algorithm 1 Cross-Modal Association

def cross_modal_association(3D_object_clusters,

2D_novel_object_proposals,

calibrations):

"""

Input:

- 3D_object_clusters: Set of 3D object clusters

- 2D_novel_object_proposals: Set of 2D novel

object proposals

- calibrations: Intrinsic and extrinsic

calibration parameters

Output:

- cross_modal_proposals:

List of (2D proposal, 3D cluster) pairs

"""

Initialize proposal list

cross_modal_proposals = []

for proposal in 2D_novel_object_proposals:

Compute frustum from 2D proposal

frustum = get_frustum(proposal, calibration,

d_min, d_max)

Compute frustum center ray

frustum_center_ray

= get_frustum_center_ray(frustum)

Find 3D clusters with tau distance

from center frustum ray

matched_clusters

= get_clusters_near_ray(3D_object_clusters,

frustum_center_ray,

tau_match)

Store matching pairs

for cluster in matched_clusters:

pair = (proposal, cluster)

cross_modal_proposals.append(pair)

return cross_modal_proposals

6.3. Adaptive 3D Box Search
To solve the continuous nonlinear optimization problem
from Eq. (1), OV-SCAN employs particle swarm optimiza-
tion (PSO) [16] to search for the 3D annotation parameter-
ized by ε = (x, y, z, l, w, h, ry). [10], for which the control
hyperparameters are reported in Tab. 6.

For each PSO search, the position values (x, y, z) of each

Algorithm 2 Cross-Modal Target Preparation

def cross_modal_target_preparation(cross_modal_proposals,

novel_object_bank,

calibrations):

"""

Input:

- cross_modal_proposals:

List of (2D proposal, 3D cluster) pairs

- novel_object_bank:

Set of novel objects for training

- calibrations: Intrinsic and extrinsic

calibration parameters

"""

cross_modal_targets = []

box_search_cost_costs = []

for pair in cross_modal_proposals:

2d_proposal, 3d_object_cluster = pair

Fit a 3D bounding box to the proposal.

3D_box_params = (x,y,z,l,w,h,ry)

3D_box_params, box_search_cost =

adaptive_3D_box_search(3d_object_cluster,

2d_proposal,

PSO_params)

Get instance mask (from SAM)

instance_mask = get_instance_mask(2d_proposal)

Selective Alignment Filters

is_not_occluded = occlusion_filter(2d_proposal,

instance_mask)

is_high_res = resolution_filter(2d_proposal)

is_aligned_mv =

multi_view_alignment_filter(2d_proposal,

3D_box_params,

calibrations)

fit_for_alignment =

is_not_occluded & is_high_res & is_aligned_mv

Get 2D Embedding from CLIP

2D_image_embed = CLIP(2d_proposal)

high_level_novel_class = classify(

2D_image_embed,

set_of_novel_classes

)

Prepare novel object target

novel_object_target = (

3D_box_params,

2D_image_embed,

high_level_novel_class,

fit_for_alignment

)

cross_modal_targets.append(novel_object_target)

box_search_costs.append(box_search_cost)

Solve conflicts from one-to-many matching in CMA

cross_modal_targets = resolve_CMA_conflicts(

cross_modal_targets,

box_search_costs

)

Perform NMS to remove duplicates

cross_modal_targets =

NMS(cross_modal_targets, box_search_costs)

Update novel object bank

update(novel_object_bank, cross_modal_targets)

return

Table 6. PSO hyperparameters used in adaptive 3D box search.

Parameter Description Value

Nswarm Swarm size 50
Niter Iterations per particle 3000
winit Initial inertia weight 10.0
wend End inertia weight 0.1
c1 Cognitive coefficient 1.0
c2 Social coefficient 1.0

Cnoise Initialization noise 0.1

candidate are initialized in areas with a high likelihood of
corresponding to the true object center. In particular, half of
the candidates are initialized at the closest point to the cen-
ter frustum ray, and the rest are initialized at the mean of the
object point cluster Pobj. To accommodate larger objects
that require a broader search space, noise proportional to
the anchor’s size is sampled from N (0, Cnoise(

Amax+Amin
2))

and added to the initialized position. The dimension and
orientation parameters are initialized uniformly across can-
didates. The inertia weight w follows a cosine annealing
schedule to balance exploration with exploitation. We fol-
low Find n’ Propagate’s [10] class anchors.

6.4. Selective Alignment
During selective alignment, OV-SCAN uses class-specific
thresholds ωocc for the occlusion filter since objects natu-
rally occupy different proportions of space within a 2D pro-
posal. As illustrated in Fig. 8, a car generally occupies a
larger area in its instance mask compared to a pedestrian, re-
sulting in a significantly higher proportion of pixels classi-
fied as instance pixels. Consequently, the pixel distribution
within instance masks varies considerably across classes,
making a uniform threshold for determining occlusion level
inadequate.

Pixel Occupancy: 75% Pixel Occupancy: 47% Pixel Occupancy: 41%

Figure 8. Percentage of instance pixels across object classes.
Vehicles, such as cars, typically occupy a greater proportion of
pixels within their 2D proposals compared to objects like pedes-
trians and traffic cones.

To address this variability, reasonable threshold values
for ωocc are manually determined for each class, as shown
in Tab. 7, ensuring more robust estimation of highly oc-
cluded objects.

Table 7. Parameterization of ωocc for different novel classes.

Novel Class ωocc

car 0.5
truck 0.5

pedestrian 0.25
bicycle 0.4

motorcycle 0.4
bus 0.5

traffic cone 0.25
barrier block 0.35

construction vehicle 0.5

6.5. Hierarchical Two-Stage Alignment Head
In Stage 1, H2SA employs classification as an auxiliary task
to generate high-level text prompts for alignment. Follow-
ing TransFusion-L [1], it regresses class-specific heatmaps
to jointly localize and classify object proposals. We com-
pute the class-based text prompt embeddings Âtext ahead
of time for retrieval. The top K proposals are then passed
through an object decoder to produce the set of features
O3D. In stage two, H2SA aligns each 3D object embed-
ding O3D with its 2D counterpart A2D. H2SA passes Âtext
through a set of linear layers to generate multi-scale text
prototypes {WH ,W2H ,W4H}. The Cross-Modal Distilla-
tion Block (CMDB) refines and upscales these prototypes,
distilling O3D into multi-scale representations. The first-
step CMDB operation is defined as:

W
→
H

= LN(MHA(WH ,O3D,O3D) +WH), (11)

where LN is layer normalization and MHA is multi-head
attention. Next, CMDB fuses the refined text prototype
W

→
H

with the 3D object embedding O3D to produce a uni-
fied feature U2H for the next step. This fusion is achieved
through channel-wise concatenation, followed by a feed-
forward network:

U2H = LN(FFN(concat(W →
H
,O3D))). (12)

This process iteratively integrates features across differ-
ent scales, enabling robust cross-modal alignment to higher-
dimension alignment targets.

6.6. Prompt-based Classification
As mentioned in Sec. 3.5, OV-SCAN employs a specific-to-
broad strategy, relying exclusively on H2SA for classifica-
tion. First objects are classified into fine-grained subclasses
before being mapped to their respective novel classes for
evaluation. To achieve this, we utilize the frozen CLIP text
encoder to generate text embeddings using the template "a
type of {SUBCLASS}." as the text prompt. For each
object proposal generated by the detector, the fine-grained

subclass is determined by selecting the subclass with the
highest object-text similarity. The corresponding label ĉfg
for each object proposal is computed as:

ĉfg = arg max
ci↑Cfg

SC(H2SA(O3D, Âtext), tci), (13)

where Cfg denotes the set of fine-grained subclasses and tci

is the text embedding corresponding to subclass ci. For the
nuScenes dataset, the fine-grained subclasses used are out-
lined in Sec. 6.6. OV-SCAN follows the same procedure for
the KITTI dataset.

Table 8. Fine-grained subclasses for each high-level novel class
in the nuScenes dataset. Con.V. refers to construction vehicle.

Novel Class Fine-grained Subclasses

car sedan, van, minivan, hatchback, suv, coupe,
police car, sprinter van, taxi

truck pickup truck, tow truck, semi-truck, gasoline
truck, delivery truck, garbage truck, fire truck,
flatbed truck, ambulance, cement truck, dump
truck

bus school bus, coach bus, double-decker bus,
transit bus, shuttle bus, minibus

trailer portable message board trailer, flatbed trailer,
freight trailer, cargo trailer

Con.V. excavator, bulldozer, forklift, construction
loader, construction lift

pedestrian adult, construction worker, police officer,
child

motorcycle cruiser motorcycle, sport motorcycle, touring
motorcycle, moped

bicycle bicycle
traffic cone traffic cone, traffic drum, traffic delineator

post
barrier plastic jersey barrier, concrete jersey barrier

7. Extending to Additional Novel Classes
This section outlines steps to expand the open set of novel
classes:
1. Extend the existing set of novel classes provided to

Grounding DINO and SAM. Regenerate the set of novel
object proposals for the given dataset.

2. For each additional novel class, add additional anchor
boxes for the adaptive 3D box search and regenerate the
novel object bank for the dataset.

3. Update the BEV encoder in TransFusion-L to incor-
porate heatmaps for the newly added high-level novel
classes and train OV-SCAN.

4. For prompt-based classification, provide the set fine-
grained subclasses for each additional novel class.

Figure 9. Visualization results on various traffic scenarios. OV-SCAN detects novel objects in scenarios including oncoming traffic
(left), vehicles stopped at a traffic light (center), and objects encountered at a busy intersection (right).

Table 9. Results for various weather conditions on the
nuScenes validation set.

Method Day Night Dry Wet

OV-SCAN 31.1 23.4 31.8 25.6
OV-SCAN-Fusion 34.0 20.7 34.4 29.6

8. Robustness of Multi-Sensor Fusion
In Tab. 9, we observe that OV-SCAN-Fusion achieves im-
proved detection performance over OV-SCAN across all
weather conditions except at night. While the fusion strat-
egy generally enhances robustness by leveraging comple-
mentary modalities, its effectiveness diminishes in low-light
conditions. The reduced reliability of image features at
night introduces noise into the model, highlighting a lim-
itation in sensor fusion under varying lighting conditions.

9. Additional Visualizations
Cross-Modal Alignment. Fig. 9 presents additional qual-
itative results to highlight the cross-modal alignment per-
formance. OV-SCAN detects two cars passing a parked
double-decker bus in oncoming traffic. It also accurately
identifies a pair of mopeds stopped at a traffic light. Finally,
a variety of objects are detected at a busy intersection.
3D Box Search. In Fig. 10, we perform a side-by-side com-
parison of the box regressed when fueled by SC-NOD vs.
Greedy Box Seeker from Find n’ Propagate. Both meth-
ods use Transfusion-L [1] off-the-shelf, while displaying
detections with confidence scores over 0.05. However, dur-
ing training, Find n’ Propagate natively follows its prede-
fined Setting 2, treating three classes (“car,” “pedestrian,”
and “bicycle”) as base and leaving the remaining classes as
novel. In contrast, OV-SCAN treats every class as novel.
OV-SCAN regresses notably more precise bounding boxes

for novel classes. Additionally, Find n’ Propagate tends to
produce more false positives due to its increased recall strat-
egy, whereas OV-SCAN maintains better precision and lo-
calization accuracy.

10. Annotation Cost
Our adaptive box search was implemented as a multi-
threaded CPU process and was run on an enterprise server
(two Xeon Gold 6140 CPUs, 768 GB RAM, 8 V100 GPUs).
Labeling the full nuScenes train and validation sets took
three to four days, while model training required an addi-
tional one and a half days. This offline cost was reasonable
considering the effort required to manually annotate large-
scale 3D datasets from scratch. The approach is scalable
and configurable—users can adjust the number of iterations
or extend to new object types with no extra human effort. A
GPU implementation could further reduce cost.

Find n’
Propagate

Find n’
Propagate

Find n’
Propagate

Ours

Find n’
Propagate

Ours

Ours

Ours

Ground
Truth

Ground
Truth

Ground
Truth

Ground
Truth

Figure 10. Comparison between OV-SCAN and Find n’ Propagate [10]. OV-SCAN regresses more precise bounding boxes than Find
n’ Propagate without requiring any human-annotated labels. We compare to Find n’ Propagate in Setting 2, which uses three base classes
(“car”, “pedestrian”, and “bicycle”), leaving the rest as novel.

	Introduction
	Related Work
	Traditional 3D Object Detection
	Open-Vocabulary 2D Object Detection
	Open-Vocabulary 3D Object Detection

	Method
	Notation and Preliminaries
	Semantically Consistent NOD (SC-NOD)
	Model Architecture
	Training
	Prompt-based Classification

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies
	Limitations

	Conclusion
	Additional Implementation Details
	Novel Object Proposals
	Cross-Modal Association
	Adaptive 3D Box Search
	Selective Alignment
	Hierarchical Two-Stage Alignment Head
	Prompt-based Classification

	Extending to Additional Novel Classes
	Robustness of Multi-Sensor Fusion
	Additional Visualizations
	Annotation Cost

