
OmniCache: A Trajectory-Oriented Global Perspective on Training-Free Cache
Reuse for Diffusion Transformer Models

Supplementary Material

1. Pseudocode of OmniCache

Algorithm 1 Calibration Stage of OmniCache
Require: Noisy input xT , model ϵθ
Ensure: reuse set S, coeffs γt

1: for t = T : 1 do
2: q ← ϵ̃θ(xt, t)− ϵθ(xt, t)

3: Save q and xt

4: end for
5: get trajectory/curvature through saved xt

6: get coeffs γt through saved q

7: get reuse set S

Algorithm 2 Inference Stage of OmniCache
Require: Noisy input xT , model ϵθ , reuse set S, coeffs γt
Ensure: Denoised output x0

1: for t = T : 1 do
2: if t ∈ S then
3: q ← ϵ̃θ(xt+1, t + 1) − ϵθ(xt+1, t + 1) {Both are pre-

stored on step t+ 1}
4: ϵθ(xt, t)← ϵ̃θ(xt, t) − γt−1 Filter(q, t) {Filter: Low-

Pass if early, else HighPass}
5: end if
6: Normal Inference Step
7: end for
8: return x0

OmniCache operates in two stages: a calibration stage
and an inference stage.

1.1. Calibration Stage
As shown in Alg. 1, we store, for various input examples,
the hidden states xt at different timesteps along with the
noise introduced by cache reuse. Based on these pre-stored
{xt}, we reconstruct the diffusion model’s full sampling
trajectory and compute its local curvature. We then select
those sampling steps whose omission has the least effect
on the trajectory; at exactly these steps we perform cache
reuse in order to accelerate inference. Moreover, since the
noise induced by cache reuse at adjacent timesteps tends to
be correlated, we use the pre-stored noise q to estimate an
inter-step noise correlation coefficient γt, which will later
guide our noise-correction procedure.

1.2. Inference Stage
During inference, we apply cache reuse at the predetermined
“reuse set” S. Our cache reuse occurs at each DIT blocks.
Regarding the OmniCache inference process, as shown in
Alg. 2, we perform two forward passes for each non-skipped
step t: 1) One actual forward pass, 2) One forward pass with
cache reuse at step t. This dual-pass approach allows us to
compute the noise qt introduced by cache reuse at step t.
When we intend to skip the subsequent step t-1, we esti-
mate qt−1 using qt and the correlation γt, thereby deriving
the corrected output for step t-1.

2. Latency
In Tab 1, we report the wall-time breakdown of OpenSora
during inference. Out of 30 sampling steps, OmniCache
eliminates 15 steps of computation; unlike ToCa and sim-
ilar methods, we do not rely on any sparsity-based oper-
ations. The additional overhead from noise correction and
high-/low-pass filtering is negligible compared to a standard
sampling step.

3. Visualization on OpenSora
As shown in Fig. 1, our visual comparison on OpenSora
reveals that the current SOTA method, TeaCache, produces
outputs with noticeable deviations from the original model,
such as the notebook in the third row and the water cup
in the fifth row. In contrast, our method generates results
that are essentially consistent with the original model while
achieving a 2.5× acceleration.

4. Visualization on Latte
As shown in Fig. 2, we conducted a visual comparison on
Latte. TeaCache exhibits many abnormal distortions—for
example, the pear in the last row and the teddy bear in the
fifth row. In contrast, our generated videos are more consis-
tent with the original model, and the objects in the videos
appear more natural.



Table 1. Latency Comparison in inference stage.

Latency Original (30 Steps) OmniCache-Slow

Real Inference Cache Reuse High/Low pass Noise All Inference
Steps (15) Steps (15) Filtering Correction Time

OpenSora 25.72 s 12.645 s 0.15 s 8.4e−3 s 3e−3 s 12.80 s

+ TeaCache-fast (2.25×) + OmniCache-slow
(2×)

+ OmniCache-fast
(2.5×)

Original

Figure 1. First-Frame Visualization of the Output Video on OpenSora V1.2 (480P, 2s at 30 Steps)



+ TeaCache-fast
(2.25×)

+ OmniCache-slow
(2×)

+ OmniCache-fast
(2.5×)

Original

Figure 2. First-Frame Visualization of the Output Video on Latte (512×512, 2s at 50 Steps)


