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Supplementary Material

A. More Ablation Studies

Incorporating Noise into the Pretraining Stage. We
investigate the effect of introducing noise into the latent
space during pretraining by adopting the formulation z; =
Varxo++/1 — qye, with the objective of reconstructing the
unmasked clean target. Despite the similarity of this setting
to the data distribution used in generative tasks, it yields
a FID of 32.20 and an Inception Score (IS) of 43.36 with-
out Classifier-Free Guidance (CFG), which is inferior to our
baseline performance. This suggests that masking modeling
already serves as a highly effective form of data augmenta-
tion, and the introduction of additional, stronger noise sig-
nificantly increases the difficulty of the learning task.

High-Resolution Results Table 10 demonstrates the ef-
fectiveness of USP at a higher resolution of 512x512.
We initialize the downstream image generation task using
weights obtained from pretraining with USP at 256 resolu-
tion and directly transfer them to the 512 resolution setting,
adjusting the positional encodings via bilinear interpolation.
The results confirm that USP maintains strong performance
and transferability under higher-resolution settings.

Model Params Steps FID (|) IS (1)
SiT-B/2  130M 400K  42.80 37.37
USP 130M 400K  33.89  45.03

Table 10. Results at 512x512 Resolution.

Image Normalization (IN). Image normalization is a
standard transformation in the community, and the default
mean ([0.485, 0.456, 0.406]) and std ([0.229, 0.224, 0.225])
are widely used. However, VAE of DiT [66] has a differ-
ent setting (mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]). We
perform pretraining using these two groups and report the
downstream results in Table 11. Although the default set-
ting of ImageNet has a lower loss (0.375), it doesn’t bring
in higher performance. Therefore, we utilize the settings of
SD-VAE [71].

Method Losspretrain  Accspr  Accrp  FID
USP 0.465 82.6% 62.8%  28.26
ImageNet IN 0.375 82.0% 60.8%  78.23

Table 11. All results are reported using the same VAE as [66].

AdaLN-Zero or Skip Connection. AdalLN-zero initial-

izes the attention and MLP branches with zero weights, ef-
fectively disabling them at the beginning of training. This
approach alleviates the difficulties associated with the train-
ing of deep transformers [66]. We explored an alternative
initialization strategy where the attention and MLP blocks
are activated from the start by calibrating the gate bias to
1. This setting achieved similar performance to the zero-
initialized approach. However, considering the minimal
modification required for DiT and the established effective-
ness of AdalLN-Zero in stabilizing training, we opted to re-
tain the original AdaLLN-Zero initialization scheme.

Comparison with UMD. UMD [35] integrates the diffu-
sion loss and MAE loss through a weighted sum approach,
aiming to achieve robust performance in both understanding
and generation tasks. However, it still significantly under-
performs compared to its single-task counterparts in each
task. We attribute this shortfall to inherent conflicts between
the MAE and diffusion models arising from their coupling.

In terms of performance and efficiency, our method
achieves a substantial reduction in training cost, requir-
ing only 15% of the computational resources compared to
the DiT baseline to match its performance (see Table 5).
This highlights the superior efficiency of our approach. In
contrast, UMD [35] significantly underperforms the DiT
baseline under the same computational constraints, further
corroborating the effectiveness of our method. For image
recognition tasks, our method achieves performance that is
on par with, and in some cases surpasses, the strong baseline
MAE. By contrast, UMD falls significantly short, demon-
strating a clear performance gap. The results reported in
Table 3 of the UMD study are not reliable and significantly
deviate from the commonly reproduced and published re-
sults in the community. For instance, the FID score for
DiT-L/2 with 400 epochs is reported as 9.6, which is con-
sistent with widely accepted results. In contrast, it is known
that the DiT-XL/2 architecture requires approximately 1400
epochs to achieve a similar FID score.

B. More Related Work

Generative Models with Auxiliary Task. MaskDiT [101]
introduces an asymmetric encoder—decoder architecture
based on the DiT framework, leveraging masked recon-
struction to reduce the training cost of diffusion models.
However, this approach involves substantial modifications
to the original DiTs, resulting in limited transferability, and
because the encoder always receives noisy inputs, it can-
not be applied to downstream recognition tasks. Similarly,



MDT [30] employs an additional decoder for mask token
modeling to enhance semantic contextual learning. Unlike
[101], it performs noise prediction on all tokens rather than
just on the unmasked ones. Although this improves gen-
eration quality, it also introduces significant computational
overhead. Essentially, these methods incorporate an ex-
tra masked reconstruction task alongside noise prediction,
which compromises architectural flexibility and, due to the
input mismatch, restricts their applicability to understand-
ing tasks. MAGE [50] proposes a unified framework for
image generation and self-supervised representation learn-
ing, simultaneously conducting generation and representa-
tion learning through a variable mask ratio and an additional
contrastive loss. MAGE utilizes VQ-GAN [28] encoder and
quantizer to tokenize the input images and focuses solely on
class-unconditional generation, whereas our approach oper-
ates in continuous space, aiming to enhance the generation
performance of diffusion models while maintaining strong
representation. In contrast, our method introduces minimal
modifications to the original DiT/SiT architecture, ensuring
excellent transferability and scalability. Moreover, by em-
ploying a single masked token reconstruction task, we de-
couple the heterogeneous optimization objectives between
pretraining and downstream tasks.

MLLMs for Unified Understanding and Generation.
Multimodal Large Language Models (MLLMs) have re-
cently drawn extensive attention from both academia and
industry. MLLMs [2, 16, 60] enable visual question an-
swering in multimodal understanding tasks by aligning im-
age embeddings with textual embeddings and jointly feed-
ing them into a large language model, ultimately yielding
text token IDs.

Several works address unified multimodal understanding
and generation tasks, which can be broadly divided into two
categories. One line of research [61, 78, 87, 91] employs
VQ-GAN [28] or VQ-VAE [81] to tokenize images into
discrete token IDs that are then fed into MLLMs for autore-
gressive image generation, thus aligning with the discrete
input format of large language models. To mitigate poten-
tial performance degradation on understanding tasks due to
discretization, [87] proposes utilizing discretized image to-
ken IDs only during the image generation stage. Another
line of research [26, 31, 34, 63, 102] does not require con-
verting images into discrete token IDs consistent with text.
Instead, it leverages the image tokens output by the LLM as
conditions for external generative models (e.g., Stable Dif-
fusion [70]) to produce images. Our approach is a purely
vision-based pre-training method, providing a robust weight
initialization for subsequent fine-tuning on downstream un-
derstanding and generation tasks.

C. Visualization

C.1. Image Restoration

We visualize image reconstruction results using a ViT-Large
model (encoder + decoder) pretrained with MAE and our
method (see Figure 6). We randomly mask 25% of the
patches and infer the restored images. Our method achieves
much better performance.

config value
optimizer LARS [96]
base learning rate 0.1
weight decay 0
optimizer momentum 0.9
batch size 16384
learning rate schedule cosine decay
warm-up epochs 10
training epochs 90(B), 50(L)

augmentation RandomResizedCrop

Table 12. Linear probing setting.

C.2. Fully Tuning on ImageNet

The hyperparameter setting for fine-tuning in ImageNet is
shown in Table 13.

C.3. Image Generation on ImageNet

The hyperparameter setting for generation in ImageNet is
shown in Table 14.

config value
optimizer AdamW
base learning rate le-3
weight decay 0.05
optimizer momentum 51, 82=0.9,0.999
layer-wise Ir decay [3] 0.75
batch size 1024
learning rate schedule cosine decay
warmup epochs 5
training epochs 100 (B), 50 (L)

augmentation RandAug (9, 0.5) [23]
label smoothing [77] 0.1
mixup [100] 0.8
cutmix [98] 1.0
drop path 0.1

Table 13. Fine-tuning the whole neural network.

C.4. Image Generation

We visualize more image generation results from DiT-XL/2
and SiT-XL/2, as shown in Figure 7 and Figure 8, respec-



Figure 6. Reconstruction results using ViT-Large on the ImageNet validation set. For each group of samples, we present the ground-truth
image (left), MAE [39] (middle) reconstructed image and USP reconstructed image (right). The masking ratio is set to 75%.

tively. All results are generated with a CFG scale of 4.0.

D. HyperParameters

D.1. Linear Probe on ImageNet

We follow the setting of [19, 39] and show the details in
Table 12.

E. Pretraining Code

We provide the code for the pre-training stage bundled with
the supplementary materials. The pre-trained weights can
be conveniently transferred to downstream understanding
and generation tasks.

model config value
optimizer AdamW
constant learning rate le-4
DiTs weight decay 0.
optimizer momentum 51, £2=0.9,0.999
batch size 256
augmentation RandomHorizontalFlip
optimizer AdamW
constant learning rate le-4
weight decay 0.
optimizer momentum 51, £2=0.9,0.999
SiTs batch size 256
augmentation RandomHorizontalFlip
path type Linear
prediction velocity

Table 14. Image generation on ImageNet.



Figure 7. 256 X256 generation samples: DiT-XL/2 (1.2M steps) with CFG=4.0.

Figure 8. 256256 generation samples: SiT-XL/2 (800K steps) with CFG=4.0.
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