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Supplementary Material

A. Datasets

KITTI dataset [19] provides calibrated RGB images syn-
chronized with Velodyne lidar point clouds, GPS, and iner-
tial data, collected from over 61 driving scenes. It includes
≈80K raw image frames paired with sparse depth maps of
≈5% density, commonly used for depth completion [77].
Semi-dense depth data is available for the bottom 30% of
the image space, while ground-truth depth maps combine
11 consecutive raw lidar scans. We trained our model on
≈86K single images, without using the test or validation
sets.
VOID dataset [86] consists of 640×480 RGB images syn-
chronized with sparse depth maps captured in indoor set-
tings like classrooms and laboratories, and outdoor gar-
dens. Sparse depth maps (≈0.5% density, ≈1,500 points)
were created with the XIVO VIO system [16], while dense
ground-truth maps were obtained using active stereo. VOID
introduces challenging 6 DoF motion due to rolling shut-
ter effects in 56 sequences, contrasting with KITTI’s planar
motion. Our model was trained on ≈46K images.
NYUv2 dataset [53] contains 372K synchronized 640×480
RGB images and depth maps captured using Microsoft
Kinect across 464 indoor scenes, including homes, offices,
and stores. To simulate SLAM/VIO-style sparse depth
maps, we employed the Harris corner detector [26] to ex-
tract ≈1,500 points from the depth maps. We evaluated
adaptation performance on 654 test images.
ScanNet dataset [12] offers 2.5 million images with dense
depth maps across 1,513 indoor scenes. SLAM/VIO-style
sparse depth maps were simulated by applying the Har-
ris corner detector [26], sampling ≈1,500 points from the
dense maps. Our experiments utilized ≈21K test images
for adaptation.
Virtual KITTI (VKITTI) dataset [17] includes ≈17K
1242×375 synthetic images across 35 videos, derived from
5 original KITTI videos augmented with 7 variations in
lighting, weather, and camera perspectives [77]. To min-
imize the large domain gap between RGB images from
VKITTI and KITTI despite Unity’s virtual similarity to
KITTI scenes [17], we used VKITTI’s dense depth maps
only to reduce the domain gap in photometric variations,
while sparse depth maps were simulated to match KITTI’s
lidar-generated distribution in terms of marginal distribu-
tion of sparse points. A test set of ≈2,300 images was used
for adaptation.
nuScenes dataset [6] provides 1600×900 RGB images syn-
chronized with sparse point clouds, featuring 27.4K train-
ing images from 1,000 driving scenes and 5.8K test images

from 150 scenes. For the test set, ground truth was created
by merging projected sparse depth from forward-backward
frames. Setup details will be provided with released code
for reproducibility.
SceneNet dataset [45] comprises 5 million 320×240 RGB
images with depth maps captured in simulated indoor envi-
ronments with randomized room arrangements. Due to the
lack of sparse depths, sparse depth maps were derived us-
ing the Harris corner detector [26] simulating SLAM/VIO
outputs, followed by k-means clustering to reduce the sam-
pled points to 375 (0.49% total pixel density). We used
≈2,300 test images for adaptation from a single split (out of
17 available) of 1,000 sequences of 300 images each. Each
sequence is generated by recording the same scene over a
trajectory.
Waymo Open Dataset [72] includes 1920×1280 RGB im-
ages and lidar scans collected at 10Hz in autonomous ve-
hicle scenes. It features ≈158K training images from 798
scenes, and ≈40K validation images from 202 scenes with
sampling frquency of 0.6 seconds. Objects are annotated
across full 360◦ field. Each top lidar sensor’s point cloud
is projected onto camera frame. Ground truth was gener-
ated by merging top and front lidar scans projected over 10
forward-backward frames, corresponding to 1-second inter-
vals, with moving objects removed using annotations. Out-
liers in depth points were filtered out for accuracy.

B. Implementation and training details

Model Architecture. Energy model is implemented as a
convolutional neural network that takes a two-channel in-
put of sparse depth and the dense prediction. It uses six 5x5
convolutional layers (stride 2) with LeakyReLU activations
to increase channel depth from 2 to 512. A final 3x3 convo-
lutional layer then maps these features to a single-channel
energy map to score input regions.
Hyperparameters. Model and dataset specific hyperpa-
rameters for test-time adaptation are noted in 2.
Training energy models. We take baseline depth comple-
tion models pre-trained on KITTI and VOID from [56]. For
each model, we train patch-based energy model on the cor-
responding source dataset i.e. KITTI, VOID. All models
were trained for 5 epochs with a batch size of 32. Specific
learning rates and hyperparameters for data augmentation
will be released with the code.
Evaluation. For outdoor datasets, test-time adaptation per-
formances are evaluated on bottom-cropped regions to ex-
clude regions where no corresponding sparse depth exists.
For VKITTI, we evaluate on 1240×240 bottom-cropped re-



gions, 1600×544 for nuScenes, and 1920×640 for Waymo.
For indoor datasets, models are evaluated on the entire re-
gion. The error metrics used for evaluation are defined in
1. For outdoor, we evaluate the models on depth range from
0.0 to 80.0 meters. For indoor, we evaluate on 0.2 to 5.0
meters.

C. Extended Related Work
As we utilize adversarial perturbations in our method, we
present a related works on the topic as an extended discus-
sion.
Adversarial Perturbations. Small input perturbations can
significantly alter classification outputs [73]. Goodfellow
et al. [22] introduced Fast Gradient Sign Method (FGSM),
later extended to iterative variants for increased effective-
ness [14, 33, 43]. Minimal perturbations were studied in
[46], and lower bounds on their magnitudes were analyzed
in [58]. Adversarial examples can yield high-confidence
outputs from unrecognizable inputs [54], and are attributed
to non-robust features [30]. Transferability across models
and datasets was explored in [52, 96].

Universal perturbation, which can be applied even with-
out knowledge of the trained model, and generalize across
domains [8], was proposed in [47]. Data-independent and
data-free constructions have been studied in [48, 49], and
generative methods has been explored in [27, 50, 59]. [62]
extends the concept to non-Euclidean domains.

Adversarial defense includes adversarial training [33,
76], universal training [51, 69], gradient discretization
[5, 94], input randomization [55, 61, 93], purification [1,
24, 60, 67], and denoising [40]. Other strategies include
normalization [97] and object detection [10].

Adversarial robustness has also been studied in dense
prediction tasks. Prior works addressed detection and seg-
mentation [28, 95], monocular depth [49, 85], and opti-
cal flow [63, 68]. Recent studies examined physical patch
attacks [113] and synthetic augmentations [13]. Stereo
attacks were considered in [90], and [4] studies univer-
sal perturbations for stereo depth estimation. We exploit
the adversarial perturbations as a mean of exploring the
data space, where the perturbed samples simulates the
out-of-distribution samples with source data. The out-of-
distribution samples enable the energy model to learn to as-
sign high energy to the predictions on target distribution.

D. Additional Qualitative Results
In addition to the qualitative results on the outdoor sce-
nario presented in the main paper, Fig. 1 shows the adap-
tation result of the pretrained CostDCNet [31] on the in-
door scenario (VOID to NYUv2). ETA demonstrates supe-
rior performance on homogeneous surfaces (left and middle
columns) and boundary regions with texture discontinuities

Metric Definition

MAE 1
|Ω|

∑
x∈Ω |d̂(x)− dgt(x)|

RMSE
(

1
|Ω|

∑
x∈Ω |d̂(x)− dgt(x)|2

)1/2
Table 1. Error metrics. dgt means the ground-truth depth.

Dataset LR wsm wz wenergy Inner Iter.

MSG-CHN
Waymo 3e-3 3.0 1.0 0.001 3

VKITTI-FOG 5e-4 6.0 1.0 0.5 5
nuScenes 3e-3 5.0 1.0 0.5 3
SceneNet 1e-3 8.0 1.0 0.1 3
NYUv2 5e-4 7.5 1.0 0.004 3
ScanNet 5e-3 8.0 1.0 0.001 3

NLSPN
Waymo 6e-3 1.0 1.0 0.001 1

VKITTI-FOG 1e-3 1.0 1.0 0.001 1
nuScenes 6e-3 1.0 1.0 0.002 1
SceneNet 3e-3 1.5 1.0 2.0 3
NYUv2 4e-3 5.0 1.0 1.0 3
ScanNet 1e-4 2.0 1.0 0.3 3

CostDCNet
Waymo 5e-3 3.0 1.0 0.1 1

VKITTI-FOG 5e-3 3.0 1.0 0.04 1
nuScenes 5e-3 3.0 1.0 0.003 1
SceneNet 6e-3 2.5 1.0 0.001 3
NYUv2 3e-3 3.5 1.0 0.0001 3
ScanNet 2e-3 2.0 1.0 0.0002 3

Table 2. Hyperparameters. Model specific hyperparameters used
at test-time.

at similar depths (right column), as observed by the over-
all darker regions in the error maps. Boxes highlight the
detailed comparisons. These results indicate that ETA ef-
fectively adapts the depth completion model to previously
unseen indoor environments characterized by background
clutter, varying illumination, and novel objects, by minimiz-
ing energy learned from the in-distribution “source” data
with and the simulated “target” data by adversarial pertur-
bations.

E. Discussion and Limitations

In the pursuit of building embodied AI agents, we must
equip them with the capability of efficient and robust ego-
centric 3D reconstruction that can generalize to different do-
mains via adaptation. We view energy-based methods, such
as ours, as a tool with unlocked potential to push the fron-
tiers of many critical sub-tasks under this broader vision of
domain adaptation.

While this paper proposes an energy-based test-time
adaptation method for multimodal 3D reconstruction [7, 15,
29, 41, 42, 56, 57, 82, 86, 88, 89, 92, 102] and demonstrates
an energy model trained on both in-distribution and adver-
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Figure 1. Qualitative results on NYUv2. We adapt CostDCNet from VOID→NYUv2.

sarially perturbed out-of-distribution samples, there are lim-
itations in scope and generality. The energy model, the core
component of our approach, can be applied to other geo-
metric tasks such as optical flow [34–37, 71, 74, 108, 109],
3D object detection [3, 99, 112], semantic segmentation
[9, 25, 32, 83, 84, 87, 98, 110], monocular depth esti-
mation [16, 18, 20, 21, 38, 39, 78, 79, 81, 85, 91, 104–
106, 111], image restoration [2, 103, 107], and stereo
[4, 23, 80, 90, 100], where adaptation mechanisms using en-
ergy models remain underexplored. We also see extension
of our work towards other sensors including radar [65, 70]
and tactile [101]. Our work also does not consider catas-
trophic forgetting [44, 64, 75], which can be mitigated by
continual learning [11, 66, 101]. We leave this for future
work. We hope our findings contribute to the adaptation
of geometric models in real-time, resource-constrained set-
tings to unforeseen environmental conditions.



References
[1] Naveed Akhtar, Jian Liu, and Ajmal Mian. Defense against

universal adversarial perturbations. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 3389–3398, 2018. 2

[2] Yunhao Ba, Howard Zhang, Ethan Yang, Akira Suzuki,
Arnold Pfahnl, Chethan Chinder Chandrappa, Celso M de
Melo, Suya You, Stefano Soatto, Alex Wong, and Achuta
Kadambi. Not just streaks: Towards ground truth for sin-
gle image deraining. In European Conference on Computer
Vision, pages 723–740. Springer, 2022. 3

[3] Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun
Chen, Hongbo Fu, and Chiew-Lan Tai. Transfusion: Ro-
bust lidar-camera fusion for 3d object detection with trans-
formers. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 1090–1099,
2022. 3

[4] Zachary Berger, Parth Agrawal, Tian Yu Liu, Stefano
Soatto, and Alex Wong. Stereoscopic universal perturba-
tions across different architectures and datasets. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 15180–15190, 2022. 2, 3

[5] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfel-
low. Thermometer encoding: One hot way to resist adver-
sarial examples. In International Conference on Learning
Representations, 2018. 2

[6] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan,
Giancarlo Baldan, and Oscar Beijbom. nuscenes: A mul-
timodal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11621–11631, 2020. 1

[7] Marvin Chancán, Alex Wong, and Ian Abraham. 3d
reprojection-driven robot navigation improves depth sens-
ing. In 2025 International Conference on Advanced
Robotics and Mechatronics (ICARM). IEEE, 2025. 2

[8] Ashutosh Chaubey, Nikhil Agrawal, Kavya Barnwal,
Keerat K Guliani, and Pramod Mehta. Universal adversarial
perturbations: A survey. arXiv preprint arXiv:2005.08087,
2020. 2

[9] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic im-
age segmentation with deep convolutional nets, atrous con-
volution, and fully connected crfs. IEEE transactions on
pattern analysis and machine intelligence, 40(4):834–848,
2017. 3

[10] Xiangning Chen, Cihang Xie, Mingxing Tan, Li Zhang,
Cho-Jui Hsieh, and Boqing Gong. Robust and accurate ob-
ject detection via adversarial learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16622–16631, 2021. 2

[11] Xien Chen, Suchisrit Gangopadhyay, Michael Chu, Patrick
Rim, Hyoungseob Park, and Alex Wong. Uncle: Unsu-
pervised continual learning of depth completion. arXiv
preprint arXiv:2410.18074, 2024. 3

[12] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:

Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 5828–5839, 2017. 1

[13] Tom van Dijk and Guido de Croon. How do neural net-
works see depth in single images? In Proceedings of the
IEEE International Conference on Computer Vision, pages
2183–2191, 2019. 2

[14] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun
Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial at-
tacks with momentum. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
9185–9193, 2018. 2

[15] Vadim Ezhov, Hyoungseob Park, Zhaoyang Zhang, Rishi
Upadhyay, Howard Zhang, Chethan Chinder Chandrappa,
Achuta Kadambi, Yunhao Ba, Julie Dorsey, and Alex
Wong. All-day depth completion. In 2024 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS). IEEE, 2024. 2

[16] Xiaohan Fei, Alex Wong, and Stefano Soatto. Geo-
supervised visual depth prediction. IEEE Robotics and Au-
tomation Letters, 4(2):1661–1668, 2019. 1, 3

[17] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora
Vig. Virtual worlds as proxy for multi-object tracking anal-
ysis. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4340–4349, 2016. 1

[18] Suchisrit Gangopadhyay, Jung-Hee Kim, Xien Chen,
Patrick Rim, Hyoungseob Park, and Alex Wong. Ex-
tending foundational monocular depth estimators to fish-
eye cameras with calibration tokens. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
2025. 3

[19] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The In-
ternational Journal of Robotics Research, 32:1231 – 1237,
2013. 1

[20] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-
tow. Unsupervised monocular depth estimation with left-
right consistency. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 270–279,
2017. 3

[21] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J Brostow. Digging into self-supervised monocular
depth estimation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 3828–3838,
2019. 3

[22] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014. 2

[23] Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai,
Feitong Tan, and Ping Tan. Cascade cost volume for high-
resolution multi-view stereo and stereo matching. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2495–2504, 2020. 3

[24] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens
Van Der Maaten. Countering adversarial images using input
transformations. arXiv preprint arXiv:1711.00117, 2017. 2

[25] Mingqi Han, Eric A Bushong, Mayuko Segawa, Alexandre
Tiard, Alex Wong, Morgan R Brady, Milica Momcilovic,



Dane M Wolf, Ralph Zhang, Anton Petcherski, et al. Spa-
tial mapping of mitochondrial networks and bioenergetics
in lung cancer. Nature, 615(7953):712–719, 2023. 3

[26] Christopher G. Harris and M. J. Stephens. A combined cor-
ner and edge detector. In Alvey Vision Conference, 1988.
1

[27] Jamie Hayes and George Danezis. Learning universal ad-
versarial perturbations with generative models. In 2018
IEEE Security and Privacy Workshops (SPW), pages 43–
49. IEEE, 2018. 2

[28] Jan Hendrik Metzen, Mummadi Chaithanya Kumar,
Thomas Brox, and Volker Fischer. Universal adversarial
perturbations against semantic image segmentation. In Pro-
ceedings of the IEEE International Conference on Com-
puter Vision, pages 2755–2764, 2017. 2

[29] Mu Hu, Shuling Wang, Bin Li, Shiyu Ning, Li Fan, and
Xiaojin Gong. Penet: Towards precise and efficient image
guided depth completion. In 2021 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 13656–
13662. IEEE, 2021. 2

[30] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan
Engstrom, Brandon Tran, and Aleksander Madry. Adver-
sarial examples are not bugs, they are features. In Advances
in Neural Information Processing Systems, pages 125–136,
2019. 2

[31] Jaewon Kam, Jungeon Kim, Soongjin Kim, Jaesik Park,
and Seungyong Lee. Costdcnet: Cost volume based depth
completion for a single rgb-d image. In European Confer-
ence on Computer Vision, pages 257–274. Springer, 2022.
2

[32] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer
Whitehead, Alexander C Berg, Wan-Yen Lo, Piotr Dollar,
and Ross Girshick. Segment anything. In Proceedings
of the IEEE/CVF international conference on computer vi-
sion, pages 4015–4026, 2023. 3

[33] Alexey Kurakin, Ian Goodfellow, and Samy Bengio.
Adversarial machine learning at scale. arXiv preprint
arXiv:1611.01236, 2016. 2

[34] Dong Lao and Ganesh Sundaramoorthi. Minimum delay
moving object detection. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
4250–4259, 2017. 3

[35] Dong Lao and Ganesh Sundaramoorthi. Extending layered
models to 3d motion. In Proceedings of the European con-
ference on computer vision (ECCV), pages 435–451, 2018.

[36] Dong Lao and Ganesh Sundaramoorthi. Minimum de-
lay object detection from video. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 5097–5106, 2019.

[37] Dong Lao, Congli Wang, Alex Wong, and Stefano Soatto.
Diffeomorphic template registration for atmospheric turbu-
lence mitigation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
25107–25116, 2024. 3

[38] Dong Lao, Yangchao Wu, Tian Yu Liu, Alex Wong, and
Stefano Soatto. Sub-token vit embedding via stochastic res-

onance transformers. In International Conference on Ma-
chine Learning. PMLR, 2024. 3

[39] Dong Lao, Fengyu Yang, Daniel Wang, Hyoungseob Park,
Samuel Lu, Alex Wong, and Stefano Soatto. On the vi-
ability of monocular depth pre-training for semantic seg-
mentation. In European Conference on Computer Vision.
Springer, 2024. 3

[40] Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang,
Xiaolin Hu, and Jun Zhu. Defense against adversarial at-
tacks using high-level representation guided denoiser. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1778–1787, 2018. 2

[41] Yuankai Lin, Tao Cheng, Qi Zhong, Wending Zhou, and
Hua Yang. Dynamic spatial propagation network for depth
completion. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, pages 1638–1646, 2022. 2

[42] Tian Yu Liu, Parth Agrawal, Allison Chen, Byung-Woo
Hong, and Alex Wong. Monitored distillation for positive
congruent depth completion. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part II, pages 35–53. Springer,
2022. 2

[43] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017. 2

[44] Michael McCloskey and Neal J Cohen. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, pages
109–165. Elsevier, 1989. 3

[45] John McCormac, Ankur Handa, Stefan Leutenegger, and
Andrew J Davison. Scenenet rgb-d: 5m photorealistic
images of synthetic indoor trajectories with ground truth.
arXiv preprint arXiv:1612.05079, 2016. 1

[46] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and
Pascal Frossard. Deepfool: a simple and accurate method to
fool deep neural networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2574–2582, 2016. 2

[47] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar
Fawzi, and Pascal Frossard. Universal adversarial perturba-
tions. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1765–1773, 2017. 2

[48] KR Mopuri, U Garg, and R Venkatesh Babu. Fast feature
fool: A data independent approach to universal adversarial
perturbations. In British Machine Vision Conference 2017,
BMVC 2017. BMVA Press, 2017. 2

[49] Konda Reddy Mopuri, Aditya Ganeshan, and R Venkatesh
Babu. Generalizable data-free objective for crafting uni-
versal adversarial perturbations. IEEE transactions on pat-
tern analysis and machine intelligence, 41(10):2452–2465,
2018. 2

[50] Konda Reddy Mopuri, Utkarsh Ojha, Utsav Garg, and
R Venkatesh Babu. Nag: Network for adversary genera-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 742–751, 2018. 2

[51] Chaithanya Kumar Mummadi, Thomas Brox, and Jan Hen-
drik Metzen. Defending against universal perturbations



with shared adversarial training. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 4928–4937, 2019. 2

[52] Muhammad Muzammal Naseer, Salman H Khan, Muham-
mad Haris Khan, Fahad Shahbaz Khan, and Fatih Porikli.
Cross-domain transferability of adversarial perturbations.
In Advances in Neural Information Processing Systems,
pages 12905–12915, 2019. 2

[53] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In ECCV, 2012. 1

[54] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural
networks are easily fooled: High confidence predictions for
unrecognizable images. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
427–436, 2015. 2

[55] Tianyu Pang, Kun Xu, and Jun Zhu. Mixup inference: Bet-
ter exploiting mixup to defend adversarial attacks. arXiv
preprint arXiv:1909.11515, 2019. 2

[56] Hyoungseob Park, Anjali Gupta, and Alex Wong. Test-
time adaptation for depth completion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20519–20529, 2024. 1, 2

[57] Jinsun Park, Kyungdon Joo, Zhe Hu, Chi-Kuei Liu, and
In So Kweon. Non-local spatial propagation network for
depth completion. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XIII 16, pages 120–136. Springer, 2020.
2

[58] Jonathan Peck, Joris Roels, Bart Goossens, and Yvan
Saeys. Lower bounds on the robustness to adversarial per-
turbations. In Advances in Neural Information Processing
Systems, pages 804–813, 2017. 2

[59] Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge
Belongie. Generative adversarial perturbations. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4422–4431, 2018. 2

[60] Aaditya Prakash, Nick Moran, Solomon Garber, Antonella
DiLillo, and James Storer. Deflecting adversarial attacks
with pixel deflection. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
8571–8580, 2018. 2

[61] Edward Raff, Jared Sylvester, Steven Forsyth, and Mark
McLean. Barrage of random transforms for adversarially
robust defense. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
6528–6537, 2019. 2

[62] Arianna Rampini, Franco Pestarini, Luca Cosmo, Simone
Melzi, and Emanuele Rodola. Universal spectral adver-
sarial attacks for deformable shapes. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3216–3226, 2021. 2

[63] Anurag Ranjan, Joel Janai, Andreas Geiger, and Michael J
Black. Attacking optical flow. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2404–
2413, 2019. 2

[64] Roger Ratcliff. Connectionist models of recognition mem-
ory: constraints imposed by learning and forgetting func-
tions. Psychological review, 97(2):285, 1990. 3

[65] Patrick Rim, Hyoungseob Park, Vadim Ezhov, Jeffrey
Moon, and Alex Wong. Radar-guided polynomial fitting for
metric depth estimation. arXiv preprint arXiv:2503.17182,
2025. 3

[66] Patrick Rim, Hyoungseob Park, Ziyao Zeng, Younjoon
Chung, and Alex Wong. Protodepth: Unsupervised con-
tinual depth completion with prototypes. In Proceedings of
the Computer Vision and Pattern Recognition Conference,
pages 6304–6316, 2025. 3

[67] Pouya Samangouei, Maya Kabkab, and Rama Chel-
lappa. Defense-gan: Protecting classifiers against adver-
sarial attacks using generative models. arXiv preprint
arXiv:1805.06605, 2018. 2

[68] Simon Schrodi, Tonmoy Saikia, and Thomas Brox. What
causes optical flow networks to be vulnerable to physi-
cal adversarial attacks. arXiv preprint arXiv:2103.16255,
2021. 2

[69] Ali Shafahi, Mahyar Najibi, Zheng Xu, John Dickerson,
Larry S Davis, and Tom Goldstein. Universal adversarial
training. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, pages 5636–5643, 2020. 2

[70] Akash Deep Singh, Yunhao Ba, Ankur Sarker, Howard
Zhang, Achuta Kadambi, Stefano Soatto, Mani Srivastava,
and Alex Wong. Depth estimation from camera image
and mmwave radar point cloud. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9275–9285, 2023. 3

[71] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
Pwc-net: Cnns for optical flow using pyramid, warping, and
cost volume. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8934–8943,
2018. 3

[72] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aure-
lien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin
Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in
perception for autonomous driving: Waymo open dataset.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 2446–2454, 2020. 1

[73] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013. 2

[74] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In European conference on
computer vision, pages 402–419. Springer, 2020. 3

[75] Sebastian Thrun. Is learning the n-th thing any easier than
learning the first? Advances in neural information process-
ing systems, 8, 1995. 3
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