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Lens | CANON24 SIGMA85 TAMRONI5-30 LAOWA100
#Sequences | 172 62 78 21

Table 7. MIORe Statistics: lenses

Translation ‘Oxyz Oxz Oxy Oyz Ox Oy Oz stable
#Sequences‘ 9 27 6 11 56 5 27 192

Table 8. MIORe Statistics: Ego-camera translation

Rotation ‘YPR YP YR PR Y P R stable
#Sequences‘ 28 16 113 11 29 51 3 82

Table 9. MIORe Statistics: Ego-camera rotations

7. Appendix
7.1. Additional Metadata Information

We emphasize the importance of comprehensive meta-
data annotation to enhance both the utility and reliabil-
ity of our dataset. For each sequence, detailed informa-
tion is recorded, thereby highlighting the dataset’s diver-
sity and real-world relevance. Such rich annotations provide
comprehensive insights into each sequence, ensuring trans-
parency and reproducibility in future research, while also
facilitating the creation of new splits for upcoming chal-
lenges. This Section is linked to the main paper Section 4.

Overall, our per-sequence annotations include the fol-
lowing details:

» General sequence information: lens type, sequence num-
ber, number of samples generated for the dataset, ini-
tial number of raw frames in the sequence, blur intensity
used, extreme motion label.

» Types of ego-camera motion: State: static (standing), dy-
namic (walking, riding, driving); Translations: Ox, Oy,
Oz; Rotations: Shake, Pitch, Yaw, Roll; Tracking.

* Scene-specific details: Background: depth-variable or
flat; Dynamic entities throughout the scene: vehicles, hu-
mans, animals, liquid, fire, foliage; Conditions: Occlu-
sions, Defocus; Weather: clouds, fog, rain, snow; Light-
based effects: sun-flare, reflections, overexposure, under-
exposure.

» Artifacts or other potential problems: sensor retention,
aliasing, bayering, LED flickering.

Table 8 depicts the number of sequences affected by
translations on the Oxyz axis. While the Ox and Oy move-
ments influence the blur in a linear fashion, namely the re-
lationship between the translated points remains geometri-
cally mostly constant, the Oz translation creates a radial ef-
fect - as we zoom in towards the vanishing point, or zoom
out of it, the projected speed of the objects on the frame
increases with their distance to the zooming center.

Similarly, Table 9 depicts the number of sequences af-
fected by Yaw, Pitch, and Roll rotations. On the one hand,

Weather | clouds fog rain SnOwW clear
#Sequences | 76 4 21 13 219
Table 10. MIORe Statistics: Weather conditions
Exposure intensity | Slight Medium Severe
Overexposure 47 20 9
Underexposure 18 12 6

Table 11. MIORe Statistics: Exposure

Y and P rotations have a similar valence as the Oy and Ox
translations, respectively. Nevertheless, rotations and trans-
lations are different, especially in highly depth-variable
scenes. However, when objects are at a considerable dis-
tance from the ego-camera, the movement types converge
in behavior. On the other hand, the R rotation is different,
as it creates variable blur proportional to the distance of the
points to the center of rotation. Again, we may observe
some similarities to the Oz translation, because of the mo-
tion magnitude dependence to a center point. Nonetheless,
the interaction between points observed in the blurry im-
ages are different, and only the observation regarding linear
versus non-linear patterns that emerge holds.

In another line of thought, by analyzing the moving en-
tities of all the sequences, we may tell none have all 6 types
of moving entities present all at once, and not even a com-
bination of all but one. Moreover, only 3 out of the 333
sequences have 4 entities at once. This further underlines
the difficulty of recording data, and the rarity of real-life
scenarios in which these types of objects occur. Obviously,
we selected few static scenes, namely 37, since they are of
lower relevance to our set of selected tasks. Mostly, the se-
quences contain only one (158) or two (104) entities in mo-
tion. It is important to mention that the occurrence of fewer
objects at the same time does not decrease the difficulty of
the dataset.

7.2. Data Acquisition Procedure

During the data collection phase, we adhered to best
practices to ensure high-quality recordings. Black calibra-
tion was performed prior to filming and repeated as neces-
sary when sensor temperatures increased, maintaining op-
timal image quality. All calibration processes were con-
ducted in a light-controlled environment to eliminate light
leaks and other potential interferences.

Exposure and Lighting: Exposure settings were cus-

tomized for each scene:

* Adjustments to shutter angle or lens aperture were used
to control light input, avoiding overexposure.

* No artificial exposure gain (+EV, ISO) was applied for
underexposed scenes, limiting outdoor captures to day-



Model X | F | MF | M | MS | S
FFTformer | 0216 0.117 0.035 0075 0095 0.043

[14] 176.2 88.7 14.3 29.5 30.2 7.2
NAFNet 0.305 0.254 0.025 0.083 0.159 0.046
[4] 141.1  113.6 10.6 21.6 21.0 8.9

Table 12. LPIPS and FID of Motion Deblurring on MIORe
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Figure 10. Trend of PSNR performance for Motion Deblurring on
VAR-MIORe.

light hours and indoor recordings to Amraam 300c 300W

lights (6400K temperature).

Custom color correction matrices (CCM) were applied
based on light intensity, season, and geographic location.
Additionally, white balancing (W/B) was dynamically
adjusted to reflect environmental conditions and lighting
variations. This Section is related to the main paper
Subsection 4.2.

7.3. Further Benchmarking Results

In this Section we are presenting some visualizations of
the tables from main paper, Section 5.

7.3.1. Additional Evaluation Metrics

We employ LPIPS to measure perceptual similarity and
FID to assess distributional alignment with ground truth. As
shown in Table 12, these metrics reveal complementary in-
sights across motion categories of varying difficulty, and
highlighting, for example, that lower LPIPS does not al-
ways correlate with better FID. This reinforces the need for
a multi-metric evaluation protocol. Table 12 includes this
subset as a representative case for frequency-based versus
regular self-attention models’ behavior.

7.3.2. Quantitative Results

Single Image Motion Deblurring:

Figure 14 depicts the radar chart PSNR and SSIM perfor-
mances visualization of the single image non-uniform mo-
tion deblurring task on MIORe, corresponding to the main
paper Table 2. Figures 10 and 11 present the PSNR and
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Figure 11. Trend of SSIM performance for Motion Deblurring on
VAR-MIORe.
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Figure 12. Trend of PSNR performance for Video Frame Interpo-
lation on VAR-MIORe.
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Figure 13. Trend of SSIM performance for Video Frame Interpo-
lation on VAR-MIORe.

SSIM on VAR-MIORe, respectively. They offer more granu-
lar information, containing additional data points compared
to the main paper Table 3.

Video Frame Interpolation:

Figure 15 displays the radar chart PSNR and SSIM per-
formances visualization of the video frame interpolation
task on MIORe, linked to the main paper Table 4. Figures
12 and 13 showcase the PSNR and SSIM values on VAR-



Motion Source Ego-Camera Scene Motion

Motion Type Static ‘ Oxyz Translation ‘ Yaw/Pitch/Roll Rotation Static Background ‘ Dynamic Entities

Components Stable ‘ Parallel Radial ‘ Chaotic Shake Tracking | Flat Depth-Variable ‘ Vehicles Humans Animals Liquid Fire Foliage Salient Subjects
MIORe v v v ' v v v v ' ' v v '

VAR-MIORe v v v v v v v v v v v v v v
GoPro [20] v v v v v v ' v v

RealBlur [21] v v v

Vimeo90K [29] v v v v v v v v v v v
X4K1000FPS [24] v v v v v v v v v v v
KITTI [10] v v v v v v

Sintel [3] v v v v v v v v

Table 13. Comparison of motion types present in our novel datasets MIORe and VAR-MIORe against the other state-of-the-art datasets in

the literature for our tasks of choice.

Tasks All (Ours) Motion Deblurring Video Frame Interpolation Optical Flow Estimation
Dataset MIORe  VAR-MIORe GoPro [20] RealBlur [21] Vimeo90K [29]  X4K1000FPS [24] | KITTI[10] Sintel [3]
Camera Chronos 2.1-HD GoPro Hero4 2 x Sony A7RM3 multiple Phantom Flex4K custom Blender
Lenses 4 1 1 unspecified 1 1 virtual
Camera FPS 1000 240 2 30 1000 10 24
Rendered FPS | 28-1000 4-1000 18-34 80 30 240 10 24
Blur Intensity 3-35 0-249 7-13 real - - - -
Max Flow 95 1932 135 47 65 288 355 414
Total Size 52218 83250 3214 4556 73171 4888 400 1628
Resolution 1920 x 1080 1280 x 720 680 x 773 448 x 256 768 x 768 1242 x 375 1024 x 436

Table 14. The comprehensive comparison of our novel multi-task MIORe dataset variants against the existing single-task datasets.
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Figure 14. PSNR (left) and SSIM (right) performances of Motion
Deblurring state-of-the-art methods on MIORe.
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Figure 15. PSNR (left) and SSIM (right) performances of Video
Frame Interpolation state-of-the-art methods on MIORe.

MIORe, respectively. They offer a better depiction of our
extensive experiments; having all the data points available,
it represents the complete version of Table 5 from the main
paper. We have chosen to present these graphic representa-
tions in the supplementary, since the exact numbers offered
in the experiments section of the main paper are more rele-
vant to our takeaways and insights.

Figure 16. Qualitative analysis of FFTformer [14] on one frame
of our MIORe dataset. Top-left quadrant displays the input blurry
image. Top-right quarter shows the equivalent ground truth label.
Bottom-left part represents the output of the model, and on the
bottom-right side one may observe the highlighted degradations of
the model. In this case, FFTformer creates a grid-like degradation
due to the overwhelming blur intensity. It is to be noted that
some particular movement types are underrepresented in multiple
datasets that we compared to. In this particular case, we may no-
tice how models trained on [20] are unable to correctly restore the
spinning wheel. This effect is persistent with all the models we
have benchmarked for motion deblurring.

7.4. OF Pseudo-GT Labels Limitations

Frame averaging: We provide the pseudocode 1. OF
computation was partially inspired from [24]. We synthe-
size blur following [20]. Differently, instead of having a
fixed window size for OF, we adapt it for each sequence.




Figure 17. Qualitative analysis of FFTformer [14] on one zero-
blur frame of our VAR-MIORe dataset. It is visible that the model
is unaware that the input is sharp, and needs no deblurring, hence
the artifacts. Firstly, the model appears to warp objects and it fails
to preserve the shape consistency of the wheel. Moreover, the
model seems to smear the high-contrast lines on the road. Sim-
ilar artifacts can be seen for the other benchmarked models.

Algorithm 1 MIORe blurring policy

procedure GETSEQOF(seq)
fs « [model(sel f Ensemble(im)) forim € seq|
return annotate(fs) if not QC(fs) else fs

end procedure

procedure GETCONFIGURATION(D)
bkt « { flow; : (window;, stride;)}i—o.. flowmax
configss < bktimean(getSeqOF(s))] for s € D
return configs

end procedure

We classified our flow magnitudes into 6 buckets (bkt),
ranging from mild to extreme. The OF is produced using a
sel f ensemble technique that applies all possible rotations
and flips to an img. The OF estimation model yields the
predicted masks which are restored to the original orienta-
tions. Then, by averaging all the computed flows, we reduce
potential underlying biases.

Yet, the SOTA OF model may still fail in edge cases. We
annotate the OF when the offline quality control QC in-
dicates us to. Inspired by [3], the QC method implies ver-
ifying segmentation and occlusion masks’ features’ align-
ment compared to the OF map. Figure 23 displays a variety
of pseudo-GT labels. There are a few aspects to be noted,
namely that the granularity of the model used may not be
high enough, since some motion may have not been seen
by the OF estimation models, which makes it unreliable in
offering us high-fidelity annotations. At the same time, Fig-
ure 24 displays three the OF maps generated for consecutive
frames, displaying inconsistencies in the pseudo-GT labels.

Figure 18. Qualitative analysis of NAFNet [4] on a sample frame
of our MIORe dataset. Left column displays the output of the
model, provided the blurry-rendered inputs, while on the right we
have the corresponding ground truth sharp images.



Figure 19. Qualitative evaluation of FFTformer [14] on several samples of from the our novel VAR-MIORe dataset. Odd rows show the
equivalent ground truth label, while even rows depict the model’s output. The numbering above the figure mentions how many frames have
been averaged to achieve the blurry input, and the frame numbers respectively. To be marked are the dataset difficulty, through its extreme
motion magnitude. The models benchmarked on VAR-MIORe display ineffectiveness when dealing with blurry images beyond a certain
thresold.
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Figure 20. Visual explanation regarding motion types described in Section 3: MIORe introduces several motion types dependent both on
ego-camera actions and the scene’s subject. Therefore, the contrast between foreground, subject, and background are better highlighted.
Referenced in this comparison are only motion deblurring datasets. The lines symbolize the interaction between the motion components
to create a certain effect. The red borders of the white-background text bubbles indicate the presence of such effects only in our datasets.
This representation extends the concepts presented in Figure 7 of the main paper, and compares the existing motion types and patterns in
MIORe with some the ones of previous deblurring datasets, some of which mentioned in Subsection 4.1.



Figure 21. Video Frame Interpolation visual results of SGM-VFI
[15] on several samples from our VAR-MIORe dataset, having the
maximum offset of 0.25 seconds between the two input frames.
The left and right frames are the inputs, and the middle frame is
split between the middle ground truth, and the model’s prediction,
which is surrounded by a red border.

Figure 22. Video Frame Interpolation visual results of VFI-
Mamba [32] on two samples from our MIORe dataset,
having the regularized offset of 9 frames (0.009 seconds)
between the two input frames. Top-left quadrant depicts the
overlaid motion differences between the first input frame and the
model’s prediction.  Top-right quadrant displays the visibly
bigger offset between the prediction and the last input frame.
From the first row, one may conclude that some mod-
els fail to precisely interpolate the middle frame, but
the quality of the prediction is very good nonetheless,
with no distortions. =~ The bottom row further shows the
offset between the ground truth labels and the predictions.  Al-
though small, the differences are significant, since the maximum
pixel travel distance is approximately of 40 units for both the
birds and vehicle image.

Figure 23. Optical Flow Pseudo-Ground-Truth generated labels.

Figure 24. Generated OF pseudo-GT labels. Purpose of this visu-
alization is to raise awareness of the inconsistencies found across
different frames. Due to reflections, shadows, large offsets, or
model suboptimalities there are several pixels that are being clas-
sified as belonging to different entities. Unfortunately, there is no
immediate solution to mitigating this problem, and it is required to
further study this subject in the future.
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