
ToF-Splatting: Dense SLAM using Sparse Time-of-Flight Depth
and Multi-Frame Integration

Supplementary Material

We provide this manuscript as a supplementary resource
to the CVPR submission #6364 titled “ToF-Splatting:
Dense SLAM using Sparse Time-of-Flight Depth and
Multi-Frame Integration” to provide a deeper understand-
ing of the proposed framework through extended insights,
detailed explanations, and additional qualitative results that
complement the findings presented in the main paper. By
including these extended materials, we hope to facilitate a
more comprehensive appreciation of the contributions and
practical relevance of the proposed approach.

6. TUM RGB-D DoD Qualitative Results
In Figure 7 we present three pairs of color views and re-
constructed depth maps to assess that our method [3], as
integrated in the ToF-splatting pipeline, generalizes well to
unseen datasets such as TUM RGB-D at test time. Indeed,
we obtain high-quality depth maps from sparse inputs.

7. Replica Qualitative Results
In Figure 8, we present the reconstructed mesh and the pre-
dicted trajectory for each scene in the Replica [28] dataset.
To achieve this, we first fit the entire scene and render depth
and color images for each pose estimated by ToF-Splatting.
These rendered outputs are then fused using Truncated
Signed Distance Function (TSDF) integration. Once the
integration is complete, we extract the 3D mesh using the
marching cubes algorithm as implemented in Open3D. The
reconstruction process employs a voxel size of 0.02 meters,
with depth values truncated at a maximum distance of 4 me-
ters to ensure robustness. On the right side of the figure,
we visualize the xy plane projections of the predicted and
ground truth trajectories, where the ground truth is repre-
sented by a dashed gray line. Additionally, a color bar indi-
cates the positional error between the corresponding frame
poses along the trajectories. The results demonstrate that
ToF-Splatting effectively achieves high-quality reconstruc-
tions and accurate tracking, highlighting its robustness and
precision in this context.

8. ZJUL5 Qualitative Results
Figure 9 illustrates the reconstructed meshes and predicted
trajectories for the scenes included in the ZJUL5 [19]
dataset. Unlike the Replica dataset [28], which primar-
ily focuses on synthetic environments, the ZJUL5 dataset
presents real-world scenarios that introduce a wide range of
practical challenges. These include substantial noise and

Figure 7. Qualitative results on TUM RGB-D dataset. Depth
maps for fr1/office (left), fr2/xyz (center), fr3/desk (right) as esti-
mated by DoD [3].

a high density of outliers resulting from sparse Time-of-
Flight (ToF) data, as well as environmental difficulties such
as poor texture, suboptimal lighting conditions, and lim-
ited fields of view. Despite these hurdles, ToF-Splatting
demonstrates remarkable robustness and adaptability, con-
sistently outperforming competing approaches. It is capable
of producing high-quality mesh reconstructions and accu-
rately predicting trajectories even under such adverse con-
ditions. These results highlight the strength and versatility
of ToF-Splatting in real-world applications, where it effec-
tively addresses the challenges posed by noisy and sparse
data while still delivering meaningful and reliable outputs.

9. Temporal Sparsity

Finally, we study ToF-Splatting performance under tempo-
ral sparsity, which refers to scenarios where the ToF sensor
frame rate is lower than that of the RGB camera. Thus, only
a subset of the RGB frames is coupled with sparse depth in-
formation. Such a situation is particularly relevant in real
use case scenarios where the ToF sensor may operate at a
reduced frame rate either due to hardware or power con-
straints. To investigate this, we simulate this scenario on the
ZJUL5 dataset [19] by subsampling the ToF frames at ratios
of [2, 3, 4, 6, 8], as shown in Figure 10. ToF-Splatting main-
tains consistent performance despite the increasing tempo-
ral sparsification. The availability of multi-view informa-
tion enables robustness in the framework, compensating ef-
fectively for the lack of sparse depth for a subset of frames.
To ensure that the system has access to the scene scale, we
provide ToF depth for every frame in the first 50 frames to
provide a reliable starting point. The results highlight the
adaptability of ToF-Splatting, demonstrating its ability to
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Figure 8. Replica Qualitatives. We provide the trajectory and mesh reconstruction qualitative results on each scene provided by Replica.
ToF-Splatting enables effective mesh reconstructions and accurate tracking.

operate effectively even when the ToF sensor’s frame rate is
significantly lower than that of the RGB camera.

10. Depth on Demand Training Details

In ToF-Splatting, we perform multi-frame integration
adapting the Depth on Demand framework [3] to our spe-
cific use case. Specifically, we significantly modify its in-
nermost logic to integrate monocular cues and handle a
larger number of frames to overcome the original two-frame
configuration. Moreover, we retrain the framework with

adjustments designed to optimize its performance in sce-
narios characterized by extreme input depth sparsity. The
architectural improvements made to the framework are de-
tailed in the main paper. To train the model, we utilized
the ScanNetV2 dataset [5], which provides a robust and di-
verse set of scenes. However, our training procedure di-
verges from the one described in the original paper [3]. In-
deed, at each iteration, we sample a set of source views be-
tween 0 and 5 and directly extract sparse depth measure-
ments from the target view instead of performing a repro-
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Figure 9. ZJUL5 Qualitatives. We provide the trajectory and mesh reconstruction qualitative results on the scenes provided by ZJUL5.
ToF-Splatting enables effective mesh reconstructions and accurate tracking.

jection from one of the previous source views. This adjust-
ment aligns better with our use case and eliminates reliance
on source-to-target projections for depth data. Addition-
ally, we introduced variability in the density of sparse depth
samples, randomly selecting a density within the range
[0%, . . . , 0.03%]. Such sparsification is important since it
effectively mimics the extremely sparse depth scenarios en-
countered in our application, ensuring that the model is
robust to real-world conditions of depth sparsity. These
enhancements collectively enable ToF-Splatting to achieve
high-quality performance, even in environments where data
sparsity and noise are significant challenges.
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Figure 10. Impact of Temporal Sparsity. The three line plots represent respectively mean absolute error, F-score, and absolute trajectory
error as the subsampling ratio of the ToF frames increases. As temporal sparsity grows, a gradual decline in overall performance is ob-
served, reflecting the reduced availability of depth information. Despite this, ToF-Splatting demonstrates resilience, maintaining reasonable
performance by effectively leveraging multi-view cues to mitigate the challenges of sparse depth sampling.


