
Supplemental material

In this supplemental material, we provide additional qual-
itative results and insights on the design choices dealing
with the creation of our dataset. We would like to high-
light that, in case of acceptance of the paper, SiM3D will
be publicly released along with the codebase created to
implement the baselines and compute the performance
evaluation metrics, so as to stimulate further research
concerning the open challenges.

S.1. Threshold employed for background removal

As anticipated in Sec. 4.2 of the main paper, in Tab. A we
report the values of the threshold distance τ employed to de-
termine the inliers of the consensus set and the offset α used
to shift the fitted plane. The classes Wooden Stool and Sink
Cabinet have not been filtered since the slight amount of
background points does not provide enough support points
to fit a plane with the employed algorithm.

Class τ α

Plastic Stool 30 -2
Rubbish Bin 30 -2
Wicker Vase 60 10
Bathroom Furniture 20 10
Container 30 2
Plastic Vase 60 2
Wooden Stool – –
Sink Cabinet – –

Table A. Background removal τ and α values.

S.2. Details on the defect distribution of the test set

In Tab. B we report several statistics on the distribution of
the defects on the test set, such as the number of test in-
stances, the number of anomalies and the mean number of
anomalies per defective instance. Even though each defect
is inherently multimodal, they can be distinguished as: (i)
3D, such as dents and bumps, characterised by significant
structural variation but minimal changes in the visual ap-
pearance of the defective area; (ii) 2D, such as scratches
and marker strokes, in which we have a negligible structural
variation and a significant deviation in the appearance of the
defective area; (iii) multimodal, such as cracks and contam-
inations, in which both structural and appearance variations
can be appreciated.

Furthermore, we report in Fig. A the distribution of the
size (in voxels) of the defects present in the test set of
SiM3D. The distribution highlights the predominance of
smaller anomalies, which renders the benchmark particu-
larly challenging.

Class Test Instances No. Anomalies Mean Anomalies
Nominal Anomalous Tot. 3D 2D Multimodal per Instance

Plastic Stool 10 10 32 11 18 3 3.2
Rubbish Bin 20 20 48 8 30 10 2.4
Wicker Vase 10 10 14 1 3 10 1.4
Bathroom Furniture 8 10 32 0 24 8 3.2
Container 46 46 104 4 67 33 2.2
Plastic Vase 48 49 62 20 27 15 1.2
Wooden Stool 6 7 34 9 21 4 4.8
Sink Cabinet 9 8 27 4 15 8 3.3

Table B. Test set defects statistics.

Figure A. Anomaly size distribution. The proposed dataset con-
tains predominantly smaller anomalies, making the overall bench-
mark particularly challenging.

S.3. Additional details on the calibration procedure
The proposed pipeline deploys a custom procedure to es-
timate the transformation between the reference frame in
which the Atos Q sensor provides the point cloud associated
with a scan, from now on Sensor Reference Frame (SRF),
and the Camera Reference Frame of the left camera (CRF).
More in detail, we acquire several (i.e., 20) views, i.e., im-
ages and associated point clouds, of a high-precision dot
pattern provided by ZEISS as part of the calibration toolkit
of the Atos Q sensor (see Fig. 3 (2) in the main paper).
Then, for each pair of images and point clouds, we apply
the following steps:

(i) Detect and refine the centres of the dots from the image
by a classical circle detection algorithm;

(ii) apply the Perspective-n-Points (PnP) algorithm between
these 2D centres in the CRF and the known 3D co-
ordinates of the centres expressed in the 3D reference
frame attached to the calibration pattern to find the roto-
translation between the CRF and the 3D reference frame
attached to the calibration pattern;

(iii) roto-translate the 3D centres of the dots – expressed in
the calibration pattern reference frame – into the CRF,
exploiting the transformation between the calibration pat-
tern and the camera previously estimated by PnP;



Figure B. Reference frames.

(iv) use the software tools provided with the Atos Q to get the
3D coordinates of the centres of the dots into the SRF;

(v) finally, given all the 3D-3D correspondences between the
centres of the dots in the SRF and the CRF obtained
from the different views of the pattern, we apply an ab-
solute orientation algorithm (i.e., Kabsch-Umeyama) to
estimate the roto-translation from the SRF to the CRF,
i.e. [Rpc|Tpc].
The accuracy of the estimation process can be assessed

by computing the ℓ2 norm of the difference between the
coordinates of centres brought from the SRF into the CRF
by [Rpc|Tpc] and those brought from the pattern reference
frame into the CRF via the transformation obtained by PnP
This assessment is performed on an additional set of views
with respect to those used to estimate [Rpc|Tpc], resulting in
a precision under 1 mm.

In Fig. B we depict the different reference frames and the
relations between them. We highlight that, with the Atos Q
sensor, the Mesh Reference Frame (MRF) is aligned in the
3D space to the SRF associated with the first point cloud
acquired while performing a 360-degree scanning of an ob-
ject, hence [R1|T1] = [I|0].

S.4. Additional details on the labelling procedure
As anticipated in Sec. 3, the labelling process involves
transferring 2D annotations – manually created on images
– to the 3D integrated mesh. This is achieved by projecting

the 3D mesh vertices into the 2D image space and asso-
ciating each vertex with the ID colour (label information)
carried by the corresponding pixel. Thus, the mesh vertices
are first transformed by the inverse of the roto-translations
[Ri|Ti] between the mesh and the considered views. Then,
they are brought into the CRF by employing [Rpc|Tpc]. Fi-
nally, the vertices’ coordinates expressed in the CRF are
projected onto the image plane of the 2D annotations by the
intrinsic parameters of the camera, A. The corresponding
pixel coordinates in the image are identified for each ver-
tex, their ID colour (i.e. label) is extracted, and the infor-
mation is assigned to the associated vertices of the 3D mesh,
thereby lifting in 3D the annotations created on the original
2D inputs. Finally, the 3D mesh with vertex colours repre-
senting the annotations is manually refined.

S.5. Additional details on pre-processing of 3D data
In Fig. C we show the procedure to obtain the depth maps
{Di}ni=1, or organized point clouds {Pi}ni=1, employed in
the experiments described in Sec. 5. In particular, after the
raw singleview point clouds are acquired through a whole
scan of the object, the ZEISS software shipped with the
Atos Q integrates them to obtain a comprehensive mesh.
Subsequently, we remove the background from this mesh
with the procedure described in Sec. 4, obtaining a filtered
mesh. Afterwards, by the knowledge of the roto-translation
[Rpc|Tpc] between the CRF and the SRF as well as those be-



Figure C. 3D Data pre-processing.

tween the the roto-translations and the mesh, [Ri|Ti] (see
Fig. B), we can render the depth maps {Di}ni=1 associ-
ated with each view by ray-tracing the cleaned mesh. Fi-
nally, to obtain clean and organized point clouds {Pi}ni=1,
which are pixel-aligned to the corresponding greyscale im-
ages {Ii}ni=1, we can simply reproject the pixel coordinates
in 3D via corresponding rendered depths and the inverse of
the camera matrix, A.

S.6. Additional details on the baselines

For the following baselines, we process greyscale images
{Ii}ni=1, depth maps {Di}ni=1 or organized point clouds
{Pi}ni=1 downsampled to the common size of 1540×1540×
3, the highest achievable with the available hardware.

Input data processed with WideResNet101, either
greyscale images or depth maps, returns features from the
second and third layers, yielding feature maps with dimen-
sions equal to 28 × 28 × 1536. Input data processed with
DINO-v2, either greyscale images or depth maps, return
features from the last layer, yielding feature maps with
dimensions equal to 110 × 110 × 768. Input data pro-
cessed with FPFH features, namely point clouds, are pro-
cessed considering a voxel size equal to 2 mm in order to
match the resolution attainable from the 3D voxel ground-
truths and yield feature maps with dimensions equal to
1540 × 1540 × 33. The spatial resolution of these maps
is then downsampled to match either the spatial resolution
of the WideResNet101 or DINO-v2 features, hence 28×28
or 110× 110.

Unlike the common practice, the 2D Anomaly Maps
obtained by the methods are not Gaussian-blurred since
the subsequent 3D aggregation and discretisation introduce
smoothing.
PatchCore. PatchCore [30] is a singleview, image-based
ADS method that employs WideResNet101 to extract fea-
tures from training data, which are subsequently stored in
a memory bank. During inference, features from test sam-
ples are queried against this memory bank to compute an
anomaly score.

We adapted this method on SiM3D, by either processing
greyscale images or depth maps, using either its original
feature extractor, WideResNet101, or the DINO-v2 back-
bone. We created the coreset with a 10% coverage and 0.9
projection radius and selected 3 as a reweight parameter for
the anomaly map computation.
EfficientAD. Efficient [1] is a singleview, image-based
ADS method that employs a Teacher–Student paradigm
based on patch description networks paired with an autoen-
coder pre-trained on WideResNet101.

We implement EfficientAD by disabling the Teacher nor-
malisation since there is no validation set available, and we
upsample the intermediate encoder outputs to match the size
of the Teacher and the Students fed with 1540×1540×3 im-
ages. Moreover, we train the Students for 1000 epochs, un-
like the 70000 expected from the adopted implementation,
since the loss tends to stall earlier due to the limited num-
ber of training images that characterise our single-instance
setup.



Figure D. Qualitatives. Views with defects (left) and Anomaly Volumes for several methods (right) downsampled for visualisation.

Back to the Features. BTF [18] is a singleview, multi-
modal ADS method that, similarly to PatchCore, employs
WideResNet101 to extract 2D features from RGB images,
and relies on FPFH to extract 3D features from point clouds.
The 2D and 3D features are subsequently concatenated and
stored in a single memory bank. During inference, 2D and
3D features from test samples are also concatenated and
queried against this memory bank to compute an anomaly
score.

We also implement BTF by using WideResNet101 to
process both grayscale images and depth maps. We created
the coreset with a 10% coverage and 0.9 projection radius
and selected 3 as a reweight parameter for the anomaly map
computation.
Crossmodal Feature Mapping. CFM [14] is a single-
view, multimodal ADS method that exploits MLPs to map
features from one modality to the other on nominal sam-
ples and then detect anomalies by pinpointing inconsisten-
cies between observed and mapped features. This solution
leverages DINO-v1 and Point-MAE to extract features from
RGB images and point clouds, respectively.

Since SiM3D contains high-resolution images and point
clouds, we adopt DINO-v2 and FPFH as feature extrac-
tors. Alternatively, to reduce computational demands, we
also implement CFM by using DINO-v2 to process both
greyscale images and depth maps. We trained the cross-
modal feature mappings for 50 epochs, following the origi-
nal implementation, with a unitary batch size to limit mem-
ory consumption.
Multi-3D-Memory. M3DM [36] is a singleview, multi-
modal ADS method that employs DINO-v1 and Point-MAE

to extract features from RGB images and point clouds,
which are subsequently stored in memory banks. More-
over, it also learns a function to fuse 2D and 3D features
into multimodal features, which are then stored in mem-
ory banks alongside those computed from the individual
modalities. During inference, features from test samples
are queried against the memory banks to compute anomaly
scores, which are then aggregated with One-Class SVMs.

Given that SiM3D contains high-resolution images and
point clouds, we adopt DINO-v2 and FPFH as feature ex-
tractors. To reduce computational demands, we also imple-
ment M3DM by using DINO-v2 to process both greyscale
images and the rendered depth maps. Furthermore, we dis-
abled the feature fusion module due to computational limi-
tations introduced by the high-resolution features. Follow-
ing the original implementation, we created both coresets
with a 10% coverage and 0.9 projection radius and selected
1 as a reweight parameter for the image-based anomaly map
and 0.1 as a reweight parameter for the point cloud-based
anomaly map. Moreover, both One-Class SVMs are trained
with a ν parameter equal to 0.5 and a maximum number of
SGD iterations fixed to 1000.
Asymmetric Student-Teacher. AST [32] is a singleview,
multimodal ADS method that employs EfficientNet-B5 to
extract features from RGB images and depth maps. Such
features are subsequently employed to optimise a Normaliz-
ing Flow as Teacher network and a feed-forward network as
a Student network. The idea is that, after optimisation, both
networks are able to reconstruct nominal samples, begetting
low discrepancies, while failing to reconstruct anomalous
samples. Since these two networks present different archi-



Figure E. Multimodal methods qualitatives. Views with defects (left) and Anomaly Volumes for all multimodal methods (right) down-
sampled for visualisation.

tectures, the way in which they fail to reconstruct anoma-
lous samples is different, hence discrepancies will be exac-
erbated, highlighting anomalies. Due to the fact that this
method work on the features, it is triviality extendable to
multiple modalities.

Given that SiM3D contains high-resolution images and
point clouds, we deployed AST by passing to the framework
1540× 1540× 3 images and depth maps.

S.7. Assessment of data generation quality and in-
sight of failure cases of the synth2real setup

We report in Tab. C the Fréchet Inception Distance (FID)
between the train set, either from the real2real or
synth2real setup, and the test set, along with the per-
formance gaps (∆ I-AUROC, ∆ V-AUPRO) for PatchCore.
We do not observe any correlation between ∆ FID and ∆
I-AUROC or ∆ V-AUPRO. Instead, in the synth2real

scenario, we noticed strong outliers in anomaly maps of
nominal samples (see Fig. F), for some objects. These out-
liers have a strong impact on detection since they increase
the false detection rate, while affecting the segmentation
performance much less.

S.8. Ancillary experiments to assess the SiM3D
challenges

As suggested during the peer-reviewing process, we ran the
following experiments to gain more insight into the unique
challenges set forth by SiM3D:
• We treated the task as single-view ADS by deploying

PatchCore, obtaining a mean I-AUROC of 0.488 vs.
0.754 of our multiview approach, highlighting the ne-
cessity of addressing the task in a multiview fashion.
Notice that we cannot compare the segmentation perfor-
mance since the ground-truths are voxel grids;



Pl. Stool Rub. Bin W. Vase B. Furn. Cont. Pl. Vase W. Stool Sink Cab. Mean

FID real2test 10.088 8.844 7.345 15.784 12.590 9.560 8.910 23.750 12.108
FID synth2test 48.744 44.565 57.302 40.900 51.900 55.194 24.040 34.060 44.588
∆ FID 38.656 35.721 49.957 25.116 39.310 45.634 15.130 10.310 32.480
∆ I-AUROC (PatchCore) 0.458 0.061 0.223 0.158 0.371 0.121 0.393 0.476 0.282
∆ V-AUPRO (PatchCore) 0.044 0.012 0.003 0.229 0.061 0.019 0.114 0.115 0.075

Table C. Data quality assessment and impact on performance. The average Fréchet Inception Distance between the train samples and
the test samples for both real2real and synth2real setups is reported.

Figure F. Outliers. The same test views inferred with the same
model, trained either with real2real or synth2real train
set, highlights the presence of outliers in the synth2real sce-
nario.

• We ran the official implementation of PatchCore on
grayscale MVTec AD, obtaining a mean I-AUROC of
0.988 vs. 0.991, and a mean AUPRO@30% of 0.929 vs.
0.935, both official results from [30], highlighting that
benchmark complexity does not stem from grayscale
images.

As for metrics, I-AUROC is directly comparable to other
benchmarks; hence, the general lower performance con-
firms that SiM3D is more challenging. Segmentation per-
formance cannot be compared since the ground-truths of
SiM3D are voxel grids.

S.9. Assessment of baselines on 2D and multimodal
anomalies

As suggested during the peer-reviewing process, we per-
formed a comparative analysis of some baselines while dis-
entangling the different kinds of anomalies. To this end,
starting from Tab. B, we split the anomalies into 2D and
3D+multimodal anomalies, hence, unifying 3D defects with
the multimodal ones. Indeed, we argue that, while it is pos-
sible to unambiguously consider some anomalies, such as
marker strokes and white-outs, as 2D-only, it is more diffi-
cult to pinpoint 3D-only anomalies, as structural deviations
in the geometry, more often than not, tend to manifest them-
selves also in the image space.

After that, we selected the best-performing algorithm
working on images (PatchCore w/ DINO-v2) and multi-
modal data (AST), The experiments, reported in Tab. D,
show that PatchCore, the image-based method, tend to
perform best on 2D anomalies and worse on multimodal
anomalies, obtaining an overall weaker performance when
all the anomalies are considered. On the other hand, AST,
the multimodal method, tend to perform well on both 2D
and multimodal anomalies, obtaining an overall stronger
performance when all the anomalies are considered. These
findings further confirm the necessity of a multimodal anal-
ysis when working in the SiM3D setup.

S.10. Attribution of existing assets
We adapted the baselines described in the main paper start-
ing from the following codebases:
• PatchCore: https : / / github . com /
eliahuhorwitz / 3D - ADS released under MIT
License;

• EfficientAD: https : / / github . com /
nelson1425/EfficientAD released under Apache
License 2.0;

• BTF: https://github.com/eliahuhorwitz/
3D-ADS released under MIT License;

• M3DM: https://github.com/nomewang/M3DM
released under MIT License;

• CFM: https://github.com/CVLAB-Unibo/
crossmodal-feature-mapping released under
non-commercial use only license;

• AST: https://github.com/marco-rudolph/
AST released under MIT License.

S.11. Ethical statement
This research, which was carried out to produce this dataset,
adheres to ethical principles and practices in computer vi-
sion research. The dataset introduced in this study does not
contain any personally identifiable information or sensitive
data. It has been collected and processed in a manner that
respects individual privacy and avoids potential biases. The
dataset and its intended use align with the ethical guidelines
outlined by the CVPR community. We have taken care to
ensure that the dataset and its potential applications do not

https://github.com/eliahuhorwitz/3D-ADS
https://github.com/eliahuhorwitz/3D-ADS
https://github.com/nelson1425/EfficientAD
https://github.com/nelson1425/EfficientAD
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https://github.com/eliahuhorwitz/3D-ADS
https://github.com/nomewang/M3DM
https://github.com/CVLAB-Unibo/crossmodal-feature-mapping
https://github.com/CVLAB-Unibo/crossmodal-feature-mapping
https://github.com/marco-rudolph/AST
https://github.com/marco-rudolph/AST


Method Modality Anomalies
Detection Segmentation

Pl. Stool Rub. Bin W. Vase B. Furn. Cont. Pl. Vase W. Stool Sink Cab. Mean Pl. Stool Rub. Bin W. Vase B. Furn. Cont. Pl. Vase W. Stool Sink Cab. Mean

PatchCore w/ DINO-v2 RGB All 0.500 0.958 0.636 0.622 0.578 0.563 1.000 0.563 0.678 0.745 0.469 0.775 0.792 0.709 0.753 0.435 0.690 0.671
PatchCore w/ DINO-v2 RGB 2D 0.646 0.902 0.602 0.723 0.678 0.498 0.980 0.612 0.705 0.832 0.498 0.674 0.801 0.718 0.687 0.455 0.678 0.667
PatchCore w/ DINO-v2 RGB Multimodal 0.425 0.573 0.534 0.439 0.592 0.632 0.754 0.587 0.567 0.276 0.354 0.456 0.548 0.698 0.603 0.404 0.596 0.491

AST w/ EffNet-B5 RGB + Depth All 0.950 0.927 0.785 0.474 0.542 0.470 0.428 0.925 0.687 0.750 0.503 0.792 0.807 0.716 0.764 0.467 0.798 0.699
AST w/ EffNet-B5 RGB + Depth 2D 0.910 0.905 0.773 0.427 0.539 0.320 0.423 0.892 0.648 0.654 0.443 0.730 0.687 0.708 0.797 0.303 0.679 0.625
AST w/ EffNet-B5 RGB + Depth Multimodal 0.945 0.895 0.698 0.410 0.498 0.543 0.413 0.904 0.663 0.738 0.475 0.765 0.789 0.893 0.683 0.564 0.723 0.703

Table D. Anomaly detection and segmentation results considering different kinds of anomalies.

Figure G. SiM3D dataset overview. From top to bottom: the single-instance real and synthetic training samples for objects Rubbish Bin
and Wicker Vase, one of the anomalous samples from the test set.

pose significant risks to individuals or society.

S.12. Additional qualitative results

We report in Fig. D additional qualitative results concern-
ing the classes of SiM3D which have not been displayed in
in Fig. 5. We additionally report in Fig. E qualitative results
for top-performer multimodal methods reported in Tab. 5.

S.13. Extended dataset visualizations
Akin to Fig. 1 of the main paper, in Fig. G, Fig. H, and
Fig. I, we show training samples, both real and synthetic, as
well as defective test samples for other object types present
in the SiM3D dataset.



Figure H. SiM3D dataset overview. From top to bottom: the single-instance real and synthetic training samples for objects Bathroom
Furniture and Container, one of the anomalous samples from the test set.



Figure I. SiM3D dataset overview. From top to bottom: the single-instance real and synthetic training samples for objects Plastic Vase
and Wooden Stool, one of the anomalous samples from the test set.
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