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Supplementary Material

A. The Quality Evaluation of Pseudo Labels

Due to the adverse nighttime conditions, the student model
suffers from poor-quality pseudo labels generated by the
teacher model. Models in the self-training framework re-
inforce incorrect predictions and fail to self-correct, thus
causing confirmation bias. To correct the confirmation bias,
we design a Pseudo Label Confirmation Calibrating module
(ConCal) to generate high-quality pseudo labels. In Fig. S1,
we conduct experiments on the TDND benchmark to vali-
date the quality of generated pseudo labels by class accu-
racy and false positive ratio.

We observed that with the use of ConCal, the classifica-
tion accuracy of pseudo labels improves by approximately
4% and continues to increase as training progresses. Mean-
while, the false positive rate of pseudo labels steadily de-
creases, showing a 4% reduction compared to the variant
without ConCal. The improvement in classification accu-
racy demonstrates that the dynamic threshold based on class
confidence in the Low-confidence Proposals Suppressing
step effectively filters the proposals that are not correctly
classified. Meanwhile, the reduction in the false negative
rate indicates that this step successfully suppresses incor-
rect proposals, while the subsequent High-similarity Pro-
posals Distilling step distills missed true positive proposals,
further reducing the model’s missed detection rate.

B. Visualization of mixed images

We do not directly mix source domain images with target
domain images, as this is shown to be detrimental to cross-
domain adaptation in Tab. 6. Due to the significant dis-
tribution gap between day and night, we leverage DNDT to
model for the day-to-night distribution bias. This allowed us
to mix night-like images, which closely resemble the target
domain distribution, with target domain images. As illus-
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Figure S1. Pseudo label quality evaluation experiment. We em-
ploy two evaluation indicators, classification accuracy and false
negative rate, to verify the quality improvement of false labels.
Where yellow denotes w/ ConCal and green denotes w/o ConCal.

(b) Foggy Cityscapes

(a) Cityscapes

Figure S2. We present the Cityscapes dataset (a) and the Foggy
Cityscapes dataset (b). Cityscapes→Foggy Cityscapes is a widely
used benchmark in routine DAOD tasks, created to evaluate the
detector’s adaptability under adverse weather conditions.

trated in Fig. S3, we observe that night-like images can be
naturally mixed into target domain images. This is because
the camera perspectives are fixed, ensuring that the pasted
objects generally align with real-world patterns (e.g., traffic
lights are positioned in the sky while cars and buses remain
on the ground). Meanwhile, to avoid unnecessary occlu-
sion, the mix is not performed when the IoU between the
mixed object and the original object is greater than 0.9 or
occludes the original object.

C. Routine DAOD Benchmark
In autonomous driving scenarios, the object detector is not
only influenced by day-night differences but also subjected
to interference from other conditions. Adverse weather
adaptation is one of the routine domain adaptive object de-
tection tasks. Therefore, we further evaluate our DeT’s do-
main adaptive performance in adverse weather adaptation.
Note that our approach is mainly designed for day-to-night
adaptation rather than routine cross-domain adaptation.

C.1. Dataset
Cityscapes As illustrated in Fig. S2 (a), Cityscapes [6] is
collected by capturing images from street scenes in daytime
conditions from 50 cities and annotated across 8 classes. It
contains 2,975 images for training and 500 images for val-
idation with dense pixel-level labels. We use 2,975 images
as the source domain.
Foggy Cityscapes As illustrated in Fig. S2 (b), Foggy
Cityscapes [23] is synthesized from the images in the
Cityscapes. Therefore, it has the same train/test split as
Cityscapes. It simulates the condition of foggy weather
according to depth information provided in Cityscapes and
generates three levels of foggy weather. We use the 2,975
densest foggy (0.02) images as the target domain and 500



Figure S3. Visualization of the D2N Mixing results. We can observe that benefiting from the DNDT module’s compensation for day-night
differences, these objects from the source domain can be naturally mixed into the target domain (where red boxes denote objects).
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Figure S4. Quantitative results. We compare the detection results of SADA [5], MIC [13], SOCCER [7], 2PCNet [17], CoS [16], ISP-
Teacher [28], and our DeT on three benchmark. Where mAPs, mAPm, mAPl denotes the mAP of small, medium, and large objects.

foggy images for validation.

C.2. Evaluation
As illustrated in Tab. S1, our DeT achieves 51.0% mAP,
surpassing all comparison DAOD methods of 0.7% mAP
compared to the best-performing Faster RCNN detector
MIC [13], 0.6% mAP compared to the one-stage FCOS de-
tector HT [8], and also 1.6% mAP compared to the De-
formable DETR detector BiADT [11]. Compared with
SOTA self-training methods, such as PT, MIC, and MTM,
DeT addresses three biases in the self-training framework,
which boosts the learning of target domain knowledge to
the student model. We also observe that benefiting from
Inverse Class Frequency Balancing submodule our DeT
achieves the smallest standard deviation of 9.02% compared
to 9.30% for MTM, 10.71% for BiADT, 9.85% for HT, and
10.00% for CMT.

D. Quantitative Results
In Fig. S4, we compare more detailed performance of our
DeT with other methods: SADA [5], MIC [13], SOC-
CER [7], 2PCNet [17], CoS [16], ISP-Teacher [28] on three
benchmarks. Where mAPs, mAPm, mAPl denotes the mAP

of small, medium, and large objects. In the BDD100k
benchmark, our DeT outperforms other methods by 3% on
mAPl, demonstrating its advantage in detecting large ob-
jects. However, it lags behind CoS and ISP-Teacher in de-
tecting small objects. In the TDND benchmark, our DeT
outperforms other methods by a large gap on mAPs, mAPm,
and mAPl. This proves that DeT can solve the day-night
adaptation bias problem well in the adverse autonomous
driving scenario. In the SHIFT benchmark, our DeT also
maintains a fundamental advantage in all three metrics, in-
dicating that DeT is also remarkably adaptable in simulated
autonomous driving scenarios.

E. Pseudo-code for Debiased Teacher

In Algorithm 1, we present a pseudo-code pipeline of our
Debiased Teacher.

F. Implementation Details

Due to the varying scales of different datasets, the imple-
mentation details of some parameters may differ. Therefore,
we provide detailed hyper-parameters in Tab. S2.



Table S1. Results of Cityscapes to Foggy Cityscapes (0.02, dense fog). The average precision (AP, %) on all classes is presented.

Method Venues Detector person rider car truck bus train mcycle bicycle mAP

Source [22] NeurIPS’15 FRCNN 39.1 22.1 42.2 20.1 30.0 6.6 28.5 35.4 30.2

SADA [5] IJCV’21 FRCNN 50.3 45.4 62.1 32.4 48.5 52.6 31.5 29.5 44.0
PT [4] ICML’22 FRCNN 40.2 48.8 59.7 30.7 51.8 30.6 35.4 44.5 42.7

TDD [12] CVPR’22 FRCNN 39.6 47.5 55.7 33.8 47.6 42.1 37.0 41.4 43.1
MGA [30] CVPR’22 FRCNN 45.7 47.5 60.6 31.0 52.9 44.5 29.0 38.0 43.6
SAD [29] T-PAMI’23 FRCNN 38.3 47.2 58.8 34.9 57.7 48.3 35.7 42.0 45.2
MIC [13] CVPR’23 FRCNN 52.4 47.5 67.0 40.6 50.9 55.3 33.7 33.9 47.6
CMT [3] CVPR’23 FRCNN 45.9 55.7 63.7 39.6 66.0 38.8 41.4 51.2 50.3

EPM [14] ECCV’20 FCOS 44.2 46.6 58.5 24.8 45.2 29.1 28.6 34.6 39.0
SCAN [19] AAAI’22 FCOS 41.7 43.9 57.3 28.7 48.6 48.7 31.0 37.3 42.1

SIGMA [20] CVPR’22 FCOS 44.0 43.9 60.3 31.6 50.4 51.5 31.7 40.6 44.2
OADA [25] ECCV’22 FCOS 47.8 46.5 62.9 32.1 48.5 50.9 34.3 39.8 45.4
CIGAR [21] CVPR’23 FCOS 46.1 47.3 62.1 27.8 56.6 44.3 33.7 41.3 44.9
CSDA [9] ICCV’23 FCOS 46.6 46.3 63.1 28.1 56.3 53.7 33.1 39.1 45.8
IGG [18] ACM MM’23 FCOS 44.3 44.8 62.2 35.8 54.2 50.7 38.2 38.7 46.1
HT [8] CVPR’23 FCOS 52.1 55.8 67.5 32.7 55.9 49.1 40.1 50.3 50.4

MTTrans [26] ECCV’22 DefDETR 47.7 49.9 65.2 25.8 45.9 33.8 32.6 46.5 43.4
O2net [10] ACM MM’22 DefDETR 48.7 51.5 63.6 31.1 47.6 47.8 38.0 45.9 46.8
AQT [15] IJCAI’22 DefDETR 49.3 52.3 64.4 27.7 53.7 46.5 36.0 46.4 47.1

DA-DETR [27] CVPR’23 DefDETR 49.9 50.0 63.1 24.0 45.8 37.5 31.6 46.3 43.5
BiADT [11] ICCV’23 DefDETR 50.7 56.3 67.1 28.8 53.7 49.5 38.8 50.1 49.4
MTM [24] AAAI’24 DefDETR 51.0 53.4 67.2 37.2 54.4 41.6 38.4 47.7 48.9

DeT (ours) - FRCNN 47.8 50.3 66.2 37.9 61.3 55.8 41.4 47.0 51.0

Table S2. Detailed hyper-parameters of DeT for each benchmark.

Hyperparameter Description BDD100k SHIFT TDND

Nc Number of shared cross-domain categories 9 6 6
b Batch size 10 9 4
φ EMA update ratio 0.9996 0.9996 0.9996

λD→N Weight for D → N Mixing Loss 1.0 1.0 1.0
λN→D Weight for N → D Mixing Loss 1.0 1.0 1.0
λsup Weight for supervised Loss 1.0 1.0 1.0
λmix Weight for mixing Loss 0.3 0.3 0.3
α Balance factor of CDRC 4 4 4
β Amplitude factor of ConCal 0.8 0.8 0.8
τ IoU matching threshold of ConCal 0.6 0.6 0.6

δbase Base threshold of ConCal 0.8 0.8 0.8
δlower Lower limit of δ 0.8 0.8 0.8
δupper Upper limit of δ 0.95 0.95 0.95
δmin Minimum threshold for distill 0.5 0.5 0.5
lr Learning rate 0.01 0.04 0.04

Tburn in Burn-in stage iterations 50000 20000 20000
Tmax iterations Total training iterations 100000 60000 60000



Algorithm 1 : The training pipeline of Debiased Teacher

Input: Object detectors: Student S(·; θs), Teacher T (·; θt) and θs/θt are the model parameters of Student and Teacher.
Burn-in stage iterations: Tburn in, Total training iterations: Tmax iterations. Hyper-parameters: Momentum φ in EMA,
adaptive threshold δ, and learning rate η.

Output: Student S(·; θs), Teacher T (·; θt) after the training of Debiased Teacher.
for iteration← 1 to Tmax iterations do

// 1. Load data mini-batch
Sample source batch Bs = {(iis, bis, cis)}

Ns
i=1 ∈ Ds(Is, Bs, Cs)

Sample target batch Bt = {(iit)}
Nt
i=1 ∈ Dt(It)

// 2. Generate night-like images from Day-to-Night Domain Transforming module by Eq.5∼9
In = DNDT(Is)
// 3. Burn-in stage

if iteration < Tburn in then
// 4. Compute supervised loss by Eq.1
B′

d, C
′
d = S(In; θs)

Lsup = Lreg(B
′
d, Bs) + Lcls(C

′
d, Cs)

else
// 5. Mutual-learning stage i.e., Cross-Domain Representation Compensating stage
// 6. Update Teacher by EMA
θt ← φθt + (1− φ)θs
// 7. Obtain accurate pseudo labels by Pseudo Label Confirmation Calibrating module by Eq.12∼15
Ŷ (B̂, Ĉ) = ConCal(S, T (It, In; θt, θt))
// 8. Generate mixing images and labels from Inverse Class Frequency Balancing submodule by Eq.10
IMD→N , IMN→D, Y M

D→N , Y M
N→D = Bi-Mixing(ICFB(In, It, Ys, Ŷ ))

// 9. Compute mix training loss by Eq.11
Lmix = Lunsup(I

M
D→N , BM

D→N , CM
D→N ) + Lunsup(I

M
N→D, BM

N→D, CM
N→D)

end if
// 10. The overall optimization objective
L = λsup · Lsup + λmix · Lmix

consis

Take SGD step: θs = θs − η▽θs L
end for

Table S3. Runtime and memory consumption during training and
inference on an RTX 3090.

BDD100k Training Inference
Method Throughput GPU Memory Throughput GPU Memory

2PCNet [17] 1.39 it/s 10.08 GB 18.88 img/s 8.43 GB
CoS [16] 0.87 it/s 12.59 GB 17.05 img/s 9.58 GB

ISP-Teacher [28] 0.48 it/s 13.33 GB 17.22 img/s 10.16 GB
DeT|Ours 0.55 it/s 12.79 GB 16.01 img/s 12.64 GB

G. Runtime and Memory Analysis

To comprehensively evaluate the practical applicability of
our proposed DeT framework, we conduct detailed runtime
and memory consumption analysis. All runtime evaluations
presented in Table S3 are conducted with identical hard-
ware configurations and experimental settings to ensure fair
comparison across different methods.

G.1. Training Efficiency Analysis
Our DeT framework demonstrates competitive training ef-
ficiency with a throughput of 0.55 it/s, which represents
a 14.6% improvement over the recent state-of-the-art ISP-
Teacher method (0.48 it/s). While 2PCNet achieves the
highest training throughput at 1.39 it/s, this comes at the
cost of significantly lower detection performance as shown
in our main results. The training speed of DeT strikes an op-
timal balance between computational efficiency and model
capability.

In terms of memory consumption during training, DeT
requires 12.79 GB of GPU memory, positioning it between
CoS (12.59 GB) and ISP-Teacher (13.33 GB). This moder-
ate memory footprint is particularly noteworthy considering
that DeT incorporates three distinct models.

G.2. Inference Efficiency Analysis
During inference, DeT achieves 16.01 images per second
(img/s), which is competitive with existing methods. While
this represents a slight decrease compared to ISP-Teacher
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Figure S5. Visualization of daytime image after different generative transformation methods. The second line: CyEDA [1]. The third line:
InstructPix2Pix [2], where the prompt is ”turn it into night time”.

(17.22 img/s) and CoS (17.05 img/s), the difference is
marginal (approximately 7%) and is well-justified by the
substantial performance gains achieved by our method. The
inference memory consumption of 12.64 GB is higher than
baseline methods.

H. Discussion of the Day-Night Transforma-
tion Methods

H.1. Physics-based Modeling vs. Data-driven Gen-
erative Approaches

In light of the reviewers’ questions, we replaced the DNDT
module with readily available generative methods (based on
diffusion models and CycleGAN), attempting to use gener-
ative models to mitigate the distribution bias between the
source and target domains. As shown in Fig. S5, both
the CycleGAN-based CyEDA [1] and the diffusion model-
based InstructPix2Pix [2] can generate visually realistic
nighttime images. However, when we replaced DNDT and
conducted experiments, the results were not satisfactory,
see Tab. S4. However, when replacing our DNDT with
the above generative methods, we observe consistent per-
formance degradation:
• InstructPix2Pix (Diffusion-based): 3.6% mAP decrease
• CyEDA (CycleGAN-based): 6.0% mAP decrease

While generative models such as diffusion models and
CycleGAN can produce visually appealing nighttime ef-
fects, they often fail to capture the true statistical distri-
bution of real nighttime data, which is critical for domain
adaptation tasks. In contrast, our DNDT module, by incor-
porating physical priors such as illumination changes, noise
characteristics, and flare effects, produces transformed im-

Table S4. Compare more day-to-night (D2N) modules on B.

row D2N Module Type B (mAP)

1 InstructPix2Pix|Brooks et al. Diffusion 47.3 (-3.6)
2 CyEDA|Beh, J.C. et al. CycleGAN 44.9 (-6.0)
3 DNDT|Ours Physical Prior 50.9 (+0.0)

ages that closely align with the actual nighttime data distri-
bution. This alignment is crucial for reducing distribution
bias, which is one of the three core biases our method ad-
dresses.

H.2. Limitations and Future Directions
We acknowledge that our physics-based approach, while ef-
fective for the day-to-night domain adaptation task, may
have limitations in scenarios where the physical modeling
assumptions do not hold or where more complex visual
transformations are required.

Future work could explore hybrid approaches that com-
bine the distributional advantages of physics-based model-
ing with the expressive power of modern generative models.
Such combinations could potentially leverage the strengths
of both paradigms while mitigating their respective limita-
tions.
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