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Symbol Type Description
@ e Ry Strictly positive number, either appearing in the dual Finsler metric or as the anisotropy gain factor parameter.
BY(x) cX Unit geodesic ball (UGB) at point .

Bi(x) cT,X Unit tangent ball (UTB) at point 2.

g Feature dimensionality. Grayscale images have ¢ = 1 and are the default in this work. Colour images have ¢ = 3, and image-like grid data can have arbitrary number of features c.
Curve on the manifold, with ¢ varying from 0 to 1.

Input number of channels.

Output number of channels.

Manifold dimensionality. For regular images, the manifold is a surface and d = 2.

Support of the convolution kernel.

Deformed kernel support when considering pixel location x.

Uniformly dilated kernel support.

Dilated kernel support when considering pixel location .

Shifted kernel support when considering pixel location .

Reference support. In the discrete world, it is typically the usual kernel  x k grid.
Normalised generalisation gap of the MSE.

Offset sampling vector at point z for all pixels in the reference support of the convolution kernel.
Offset sampling vector at point « for pixel y in the reference support of the convolution kernel.
Diffused Dirac image at time step ¢.

Geodesic distance according to the metric F* from points & to y.

Geodesic diffusion time step.

Small positive number used for numerical stability.

Small scalar controlling the maximum scale of the metric.

Hyperparameter controlling the maximum tolerated asymmetry, with 1 being no asymmetry.
Learning rate.

Image with ¢ colour channels. By default in this paper, it has ¢ = 1 channel.

Finsler metric on the tangent bundle X x T, X of manifold X .

Dual Finsler metric.

Finsler metric on the tangent plane 7', X at point = on the manifold X.

Finsler metric parametrised by .

Fy X =Ry Finsler metric, parametrised by +, at point .

g (Q o RC Convolution kernel. It can be viewed as an image, just like £, or we can focus only on its support. Its values g(y) are the weights of the convolution kernel.

bl €RP Metric such as M for Ri ian metrics and (M, w) for Randers metrics.

hy Q=R Finsler-Gauss kernel.

L eRy Average metric scale parameter.

k eN Edge size of discrete convolution filters, containing & x & values for two-dimensional image convolution.

L € Rixd Lower triangular matrix with positive diagonal defining the Cholesky decomposition of M = LLT. For images, it is a 2 x 2 matrix with only 3 non-zero entries.

L € Rixd Slightly modified version of the lower triangular matrix L by L = L -+ .1 to control the maximum scale of the metric.

A € Rixd Diagonal matrix.

A eRy Strictly positive scalar.

Ai eR Scalar, i-th eigenvalue.

be eR, Positive and stable modification of \;.

X eRy Unscaled modification of \;.

M (X o Sit Riemannian tensor. It fully encodes the Riemannian metric. At point -, M () is a symmetric positive definite matrix. For standard image manifolds, M () is 2 x 2. For conciseness, M also refers to M (x) without
ambiguity.

M € Rixd Perturbed version of the estimated metric M for stability.

M* (X =S5t Riemannian tensor of the dual Randers metric of the Randers metric with parameters (M, w).

ma(y) €[0,1] Modulation value for the ion weight g(y) when considering the pixel location

Vf(x) cR¢ Gradient of [ at pixel x.

Vi@t  eRr? Orthogonal of the gradient V /().

[I-ll eRy L norm of a vector with symmetric positive definite matrix A, meaning [|ull4 = VuT Au.

Q CR? Parametrisation domain. For images, it can be seen as the unit square of R?.

w (X ST X w(x) is the tangent vector parametrising the linear drift component of a Randers metric at point .

w* X =T X Linear drift vector field of the dual Randers metric of the Randers metric with parameters (M, w).

@ (X 5 TX Modified scaled version of w(z).

Py (R 5 Q Stencil of points to be geodesically flowed at unit speed.

Ry CcR Set of positive numbers (includes 0).

R € Rixd Rotation matrix (or a triangular matrix in the QR decomposition).

R : X x T, X — Ry Riemannian metric on the tangent bundle X x T3, X of manifold X .

R, (T X — Ry Riemannian metric on the tangent plane 7, X at point z on the manifold X.

r eR? Vector whose normalisation is the first column of a rotation matrix.

7 eR? Perturbed version of 1 for stability.

7 eR? Orthogonal vector to 7.

s Ry Dilation factor. It is global as it is the same at all pixel locations . It is also used as the radius integration variable when using polar coordinates.

5 ER, Estimated eigenvalue scale.

S0 ER, Initial scaling factor for geodesic flow of a stencil of points.

Smax eRy Maximum tolerated eigenvalue scale.

Smin eRy Minimum tolerated eigenvalue scale.

Sy eRy Dilation factor at point x. It is local as it can differ between pixel locations .

- ‘R Ry Sigmoid function.

a :R— R, Modified sigmoid function.

on eRy Standard deviation of white Gaussian noise. It encodes the noise level.

Tnax ERy Temperature hyperparameter of the Adam optimiser.

T.X =R Tangent space at point  of the manifold X . For standard image manifolds, it is a two-dimensional plane and can be associated as R? for a fixed coordinate system.

0 € [0,2n] Angle.

0, € [0,2n] Angle of the image gradient.

u e, X Tangent vector.

up € R? Euclidean unit vector with angle 6: ug = (cos 6, sin) .

X cR! Manifold. For images, it is the same as the parametrisation space 2, and thus can be viewed as the unit square of R2. This perspective is different from a common convention where images are viewed as embedded
manifolds, for instance colour images would be curved two-dimensional surfaces embedded in R?.

T eX Point of the manifold. For image ifolds, it is by ion the pixel i position in .

Y e Pixel location of the convolution kernel.

z cQ Support of the convolution kernel when considering the pixel location .

y2(0,7) € Bi(z) Point on the unit tangent circle of - with angle 6 for the metric F7.

Z(z) eRy Normalisation factor in the Finsler-Gauss kernel.

ke Ry Uniform in tion value of kernel weights.

CNN Acronym Convolutional neural networks.

FKW Acronym Fixed kernel weights. It is an experimental setting where convolution kernels have fixed uniform weights.

LKW Acronym Learnable kernel weights. It is an experimental setting where convolution weights are learned.

MSE Acronym Mean squared error.

sC Acronym Scratch, for training convolution kernels from scratch.

TL Acronym Transfer learning, for training convolution kernels using transfer learning.

UGB Acronym Unit geodesic ball: set of points on the manifold within unit geodesic length according to the metric.

UTB Acronym Unit tangent ball: convex set of tangent vectors of unit length according to the metric.

Table 5. Table of notations. Most notations are used only in the appendix.



A. Finsler and Randers Metrics: Further De-
tails

We refer the interested reader for more information on
Finsler and Randers metrics to the specialised Finsler lit-
erature, such as [5, 54, 55]. The details mentioned in this
section are well-known in the community, but we put them
here so that our paper is self-contained.

A.l. Finsler Metric Axioms

We provide in Fig. 7 a simple visualisation of the Finsler
metric axioms. The triangular inequality is equivalent to the
convexity of the unit tangent balls. Positive homogeneity
implies that the metric scales with the same ratio as tangent
vectors when considering only positive scaling (no flips).
This differs from regular homogeneity, as in Riemannian
metrics, where the metric scales with the absolute value of
the ratio of tangent vectors. In a homogeneous metric, if
A > 0andu € T, X, then A\u and — Au both have their met-
ric scaled by the same number |\| = A, making the metric
symmetric. In contrast, in a positively homogenous metric,
the metric at vectors oppositely scaled Au and —A\u is dif-
ferent, as F,(Au) = AF,(u) and F,(—Au) = AF.(—u),
where F,,(u) # F,(—u) in general. Note that a homoge-
neous metric is also positively homogeneous. For this rea-
son, Riemannian metrics, which are root-quadratic homo-
geneous metrics, are special cases of Finsler metrics (see
Fig. 8). Randers metrics are special cases of Finsler metrics
containing Riemannian metrics, but when w # 0 they only
satisfy the positive homogeneity.

A.2. Randers Metric Positivity

The positivity of the Randers metric F' is ensured by
lwllar—1 < 1. In fact, we can generalise the statement in
the following proposition that links the Randers metric with
the regular Lo norm.

Proposition 1. Let 0 < ¢ < 1. If for any point x on the
manifold we have ||w(x)||rpr-1(z) < 1 — €, then the metric
satisfies Fy(u) > ¢||ull2 for any w € T, X. In particular, if
lwllar-1(z) < L, then Fy(u) > 0 for any u # 0.

Proof. All tangent vectors of 7T, X can be rewritten as
M (z)~'u. We then have

Fo(M(z) ') = \/uT M(z) " u+w(z) " M(z) tu
4)
w(z), M(z)"Zu). (6)

N|—=

— 1M ()" 2l + (M(z)™

The Cauchy-Schwartz inequality provides that

o=

()M ()] < [[M (@) Feo(a) o[ M (@) .

(7

Triangle inequality <= Convexity

Al lu

—xlu

Positive homogeneity =—> Asymmetry

—Au

Homogeneity — Symmetry

Figure 7. Illustration of metric axioms. The triangular inequality
is equivalent to the convexity of unit tangent balls. Finsler metrics
are positively homogeneous, which is less restrictive than regular
homogeneity and allows asymmetric distances. In contrast, Rie-
mannian metrics are homogeneous and thus always symmetric.

Randers
Finsler

Figure 8. Venn diagram of Finsler metrics. Riemannian metrics
are a special case of symmetric Finsler metrics. Randers metrics
contain Riemannian ones, but are in general asymmetric.

The assumption on w can be rewritten as

1M (2) " 2w(@)] < 1--. ®)

Thus, for any tangent vector u, we get F, (M (z)~tu) >
e||M (x) = ul|2, and so for any such u, we obtain the desired
result F,(u) > €||ul|2. O

A.3. Finsler Geodesic Distances

Given a Finsler metric F', the geodesic distance dist ¢ (z, y)
between points x and y on the manifold is given by the min-
imum length of a smooth curve ¢(t) from z to y

distp(z,y) = H%lgl
c(t
c¢(0)=z and c(1)=y

| FolEo)e o
[0,1]

In particular, the orientation x to y is important for non Rie-
mannian asymmetric metrics, as then F.;)(9¢(t)) may dif-
fer from Fl (— 9¢(t)).



A.4. Dual Randers Metric

The dual metric of a Finsler metric plays a key role in differ-
ential geometry on manifolds as it systematically appears in
major differential equations, such as the Eikonal equation
or the heat diffusion equation. Formally the dual metric of
F is the metric F'* such that

F(u) = max{u'v; v € T, X, Fp(v) < 1}. (10)

One can easily verify that it satisfies the Finsler metric ax-
ioms. If F' is a Randers metric parameterised by (M, w),
then the dual metric F'* is also a Randers metric. It is
parameterised by (M*,w*), which are explicitly given by
(M,w).

Proposition 2. The dual of a Randers metric F' parame-
terised by (M,w) is a Randers metric F*. If we denote
o =1-|w|3,-1 > 0, then the parameters (M*,w*) of
F* are given by

M = %(aM‘l n (M‘lw)(M‘lw)T>7
w*=—-1Mtw.

Proof. To ease notations, we drop the explicit dependence

on z. Although the definition of the dual Randers metric is

given in Eq. (10), since F' is positive homogeneous it is also

given by

.
F*(u):max{;ﬁ(:); 1)7&0}. (11)

Therefore, the inverse solves the minimisation problem

F%(u) = min { 5%); v # O}. Likewise, by positive homo-

geneity, we have that the inverse of the dual metric satisfies
the constrained minimisation problem

o = min{F(v); v =1) (12)

=min{F(v); u v =1}.

F(u) ’
We can also solve this constrained optimisation problem
with Lagrangian optimisation. The Lagrangian is given by
L(v,\) = F(v) + Mu'v. To satisfy the KKT conditions,
we differentiate L with respect to v and set the gradient to
0. The optimal v* thus satisfies

*

+w+Au=0. (13)

0¥l
By computing the scalar product of this equation with v*,
and recalling that the constraint guarantees u ' v* = 1, we
get, since F(v*) = Vo* T Mv* 4+ v* " w, that A = —F(v*).
Recall that v* solves the minimisation problem Eq. (12).
Therefore,

(14)

Returning to Eq. (13), we can compute ||w + Au|[p;-1 as

[ Mv*||pr-

—1. (15)
llv* || ar

||C/uv + A’U,H]\/j—l =

By squaring this equation, we obtain a polynomial of degree
two for which A is a root

N2 [ull3s + 20w, w)ag 1+ w3~ 1=0. (16)

Leta =1 — ||w||3,-: > 0. The roots are then given by

—(wywar £ lw, w3+l e

Ay =
lullf-

a7

Clearly, we have A_ < 0 < A4 for u # 0. However, A < 0
as A = —F(v*) and the metric is always positive. As such,
A = A_. Inverting Eq. (14), we get

. ull3; -
F*u) = (18)
wr ) a4y, w0+l e
1
= \/uT2 (aM~1'+ M lwwT™ M- u

o

1
— (@b, (19)

«

1 _ =Y
Yy~ x?-y
the square root from the denominator. We now identify the
dual metric F** as a Randers metric associated to (M™*, w*)

as initially claimed

where the classical trick was used to remove

x _ 1 -1 -1 -1, \T
{M = FM T+ (MM )T,

w* =1 M.

T«

O

Going further. When studying the propagation of a wave
front [54], the dual metric naturally appears yielding the
Finsler Eikonal equation

Fi(-Vf)=1. 1)

Likewise, by observing that the heat equation in the Rie-
mannian case is given by the gradient flow of the Dirichlet
energy, we can descend on the dual energy %F;j (u)? to de-
fine the Finsler heat equation [5, 55]

af _ ..

= = div(F;(V)VE; (V). (22)
From the heat equation we can then compute various fun-
damental operators, mainly the Laplace-Finsler operator, a
generalisation of the Laplace-Beltrami operator, that de-
scribes the shape [5]. These interesting constructions are



beyond the scope of this paper. For the interested reader,
we point out the nice presentation and exploration of Finsler
and Randers metrics and heat equation, leading to the
Finsler-based Laplace-Beltrami operator [72], which was
used instead of the traditional Laplacian to solve the shape
matching problem [7-9]. . Additionally, we refer to [24] for
a recent example of a beautiful application of elementary
Finsler geometry for manifold learning and dimensionality
reduction of asymmetric data.

A.5. Finsler and Hyperbolic geometry

Finsler geometry is a generalisation of Riemannian geom-
etry where distances can depend on both position and di-
rection, leading to more flexible and varied shapes. Within
Finsler geometry, some spaces show properties similar to
hyperbolic geometry [2, 45-47, 58, 73], a special type of
Riemannian geometry having constant negative curvature.
Extending further, Finsler-Lorentz geometry [1, 12, 56] al-
lows the metric to have a Lorentzian signature, meaning it
can describe not just spatial distances, but also time and
causality as in relativity, all while keeping the direction-
dependent qualities of Finsler spaces. This helps model
more general and realistic behaviours in physics and geom-
etry.

B. From Single-Channel Images to Manfifolds
with Any Intrinsic or Feature Dimensions

B.1. Generalising our Unifying Metric Theory

Preliminaries. An image is a special type of two-
dimensional manifold X, where for each point z € X =
Q = [0,1]* on the manifold we associate a feature vector
f(x) € Re. An other equivalent popular perspective for im-
age manifolds is to see them as surfaces X C ) x R¢ C
R*¢ of the form (z, f(z)), but we do not adopt this per-
spective in this paper. The image feature dimensionality c
is also called the number of channels of the image. Image
manifolds can be generalised beyond two-dimensions. A
d-dimensional hyperimage is a manifold X = © = [0, 1]¢
with feature function f : X — R° The manifold dimen-
sionality of a hyperimage is d, regardless of the number of
channels of the hyperimage: when embedding the hyperim-
age in R¥*¢, the manifold (z, f(x)) for z € Q is locally
d-dimensional, meaning its tangent space 7, X can be asso-
ciated with R?. Points 2 € (2 parametrising the hyperimage
are called hypervoxels, generalising the concept of pixels
when d = 2 and voxels when d = 3.

The particularity of image and hyperimage manifolds is
that they possess a global uv parametrisation via x € ) =
[0, 1]¢. For general manifolds, finding such a parametrisa-
tion is only possible locally®. Depending on the topology

3For instance there is no global smooth wv parametrisation of the Klein
bottle, even though it is a smooth two-dimensional manifold.

of the manifold, it may be possible to find such a global uv
parametrisation, as for instance in genus 0 manifolds (topo-
logical planes or spheres). For general manifolds X satis-
fying this global uv parametrisation, e.g. a closed surface
in R3, a manifold hyperimage can be viewed as a mani-
fold enriched with a texture feature function f : X — R°€.
Thanks to the global parametrisation, this formulation is
mathematically equivalent to regular hyperimages where
X =Q=10,1]% e.g. [0,1)? for a closed surface in R?.

We are now ready to generalise our unifying theory on
image convolutions to hyperimage convolutions.

Theoretical generalisation. Given a hyperimage of di-
mensionality d having c¢;, channels associated to the func-
tion f : Q = [0,1]% — R¢», and a kernel hyperimage of
dimensionality d with c,,; X ¢;;, channels associated to the
function g : Q — RewXcn_ A hyperimage convolution
produces a d-dimensional hyperimage with c,,; channels,
and is defined per output channel as

GUICEDS /Q ) iz +p)dy,  (23)

for j € {1, -, cout }- This definition can be summarised
in matrix-vector form as

(f * 9)(x) = /Qg(y)f(x ydy, Q4

which uses the same formalism as Eq. (1).

Our entire theoretical discussion in Sec. 3 then immedi-
ately generalises to hyperimages of any dimensionality and
feature channels. In particular, Theorem 1 would still ap-
ply. For instance, after discretising 2 = [0, 1]¢ into hyper-
voxels, the reference kernel support A can be given by a
k x --- x k grid with k¢ hypervoxels, e.g. with hypervoxel
indices {(i1, -+ ,iq) € {—1,1,0}?} for k = 3. Dilation
would scale this reference support by a factor s in all d di-
mensions. Shifted convolutions would shift the support by
5, € R? and deformable convolution would associate a
shift vector §¥ € R? for each of the k¢ cells.

Note that the hypervoxel grid discretisation is a stan-
dard procedure for hyperimages as they share a global uv
parametrisation via z € = [0, 1]¢. This procedure though
is less frequent for manifolds equivalent to hyperimages,
such as genus 0 manifolds like closed two-dimensional sur-
faces. Nevertheless, our formalism is not reliant on a spe-
cific type of sampling, it only requires the ability to approx-
imately query feature values at non sampled locations of the
manifold. This is usually possible for most parametrisations
via some form of interpolation of feature values.

Finally, consider general manifolds that are not equiva-
lent to hyperimages, where a global uv parametrisation does
not exist. Our formulation still generalises to them as long



as the local kernel support A, is small enough within the lo-
cal neighbourhood where we can use a local uv parametri-
sation to approximate the manifold around point x.

B.2. Generalising Metric Convolutions

Metric convolutions easily generalise beyond single-
channel image convolutions.

Feature dimensionality. As defined in Eq. (23), when
images are not single-channel, the j-th output feature of the
convolution is given by the aggregation of ¢;,, convolutions
between the single-channel images f; and g;;. As such,
to generalise metric convolutions to multi-channel data, it
suffices to define c;, single-channel metric convolutions
for each output dimension. This procedure would require
Cout X Cin single-channel metric convolutions to compute
the convolutions from c;;, to ¢, channel images. This gen-
eralisation procedure is the same as for generalising stan-
dard convolutions. As the required number of kernel sam-
ples, k X k X cip X Cout for k x k convolutions, linearly
increases with the number of input channels this can make
high channel convolution operation particularly costly. To
overcome the issue, the kernel g can be made sparse using
separability, such as g;; = 0 for j # ¢ in depthwise con-
volutions [17, 33, 62, 63] or g;;, = 0 for j ¢ C; in group
convolutions [39], where C; is a group of input feature di-
mensions* for dimension j. The same can be done in met-
ric convolutions. By using (block) separable filters, the size
of the convolutions can drastically decrease, as depthwise
convolutions use k X k X ¢;, kernel locations and group

convolutions use % for G groups.

Manifold dimensionality. For a d-dimensional manifold
X, its tangent spaces 1, X are d-dimensional spaces and
can be associated with R?. Given a fixed Cartesian
parametrisation of R?, the Riemannian metric of such
a manifold is defined as in two-dimensions: R,(u) =
VuT M (z)u. However, now u € T,X = R%is a d-
dimensional vector and the metric tensor M (z) € R*4
is a d x d symmetric positive definite matrix. Likewise,
Finsler metrics generalise in a similar fashion. In partic-
ular, the Randers metric of a d-dimensional manifold is
then given by Fy(u) = /uT M(x)u + w(z) u, where
now w(z) € T, X = R% is a d-dimensional vector. With
these generalised definitions, we can then perform minor
modifications to generalise our metric convolutions to d-
dimensional manifolds. Note that we focus on hyperimage
manifolds, which provide a shared universal parametrisa-
tion of the manifold and of the tangent spaces, given by the
canonical Cartesian coordinates of R%. This avoids the need

“#Standard convolution has a single group, i.e. C; = {1,---,cin},
whereas depthwise convolutions has as many groups as input (and output)
features, i.e. C; = {}.

to compute changes of local coordinate systems, simplifies
derivations, and allows simple interpolation of features be-
yond sampled values.

For illustration, we here present a generalisation of UTB
metric convolution. Given the metric parameters M (x) €
R? and w(x) € R?, we need to compute explicitly the unit
tangent ball, which is now a convex hypersurface of dimen-
sion d—1 in the tangent plane rather than a curve in the two-
dimensional tangent plane. As it is convex and containing
0, it can be parametrised via d — 1 angular spherical coordi-
nates # € R?~!. For Randers mertrics, the UTB is a hyper-
ellipsoid given by the equation u " M (z)u = (1—w(z) "u)?
in u. Using this spherical reparametrisation, Eq. (3) still
holds for points on the unit ball. Thus, the metric UTB
convolution formula Eq. (4) still holds, with now 6 being
d — 1-dimensional angular spherical coordinates and s € R
is the scalar radius coordinate.

We can generalise our discretisations of metric convolu-
tions. Focusing once again for simplicity on UTB metric
convolutions, the Cholesky decomposition approach would
require encoding the symmetric positive definite matrix M
as M = LLT where L is a lower triangular matrix, thus
encoded by @ values. For the spectral approaches,
we would need to compute d values for the eigenvalues of
M. To compute the orthogonal eigenbasis U, like in the
2-dimensional case, several approaches are possible. We

could use the exponential map U = e° for some skew-
symmetric matrix S = —S, parametrised by Ld; D un-

constrained entries. Another option is to encode U via
Givens rotations U = Ry - - - Rg(4—1)/2 where each Givens
rotation is a planar rotation in the plane of two of the co-
ordinate axes, requiring more parameters for encoding as
we need the angles (or their cosine and sine) and the cho-
sen axes. Another option is to take the QR decomposition,
since any matrix A can be decomposed as A = QR where
@ is orthogonal and R is upper triangular. We could thus
encode U = AR~ requiring d2 4+ -0 — dBd71)
rameters, and making sure that the diagonal of R is non-
zero’. Regarding w, we can encode it in the same way as
in the two-dimensional case, requiring now d numbers in-
stead of 2. These decompositions can be tweaked manu-
ally according to heuristics, or can once again be learned.
Note that the numbers required to compute M can either
be learned directly or can be learned as output of an inter-
mediate standard d-dimensional convolutions, which would
guarantee signal-adaptive shift-equivariant metric computa-
tion and thus shift-equivariant metric convolution, as in the
two-dimensional case.

Note that an important aspect of our convolutions is
knowing how to query features at non-sampled locations.
When using hyperimages, the canonical axes of the domain

SFor instance by feeding the diagonal to any positive non-linearity fol-
lowed by a positive perturbation of €.



Q) = R? are universal and shared by all hyperimages and
are the same in each tangent plane of each pixel position.
In particular, non sampled locations are guaranteed to fall
within a hypercube of uniformly sampled hypervoxels grid
points. This implies that feature interpolation requires only
a small number of support samples with analytically known
locations and analytically derivable interpolation formula.
This makes the interpolation cheap and fast to implement,
and would be more challenging if we were working on non-
hyperimage data with irregular samples locations that differ
between data instances (e.g. pointclouds).

C. Proofs of Our Unifying Metric Theory
C.1. Proof of Theorem 1

Unlike most of the community, we are rephrasing the pre-
existing convolutions in the continuum. For now, we put
aside modulation, which breaks the weight sharing assump-
tion of convolution. Dilated convolutions scale by a factor
s the reference support A, usually uniformly in the im-
age, to provide a dilated support A%": A% = s A Dilated
convolution is thus given by

(Frg)l)= | flatsyglsy)dy. 23

In the non-standard case of using a different scale s, for

each pixel z, the support changes per pixel A% = s, A"/,
and then dilated convolution is defined as

(f*g)(x) = ot (z + sey)g(sey)dy.  (26)

In all cases, dilated convolutions can be rewritten as

(fxg)(z) = v f(z+y)g(y)dy. (27)

Shifted convolutions, also called entire deformable con-
volutions, simply shift the reference support A" by an off-
set d,, shared by all cells

(f*g)(x) = ff(w +y+02)9(y+0.).  (28)
Are
As such, if we denote A®" = §, + A", we have for
entire deformable convolutions

(fxg)(x) = R [+ y)g(y)dy. (29)

On the other hand, deformable convolution introduces

different offset vectors J¥ for each entry in the reference
kernel support A’¥. Therefore, it is given by

(fxg)(z) = flx+y+02)gly +0¥)dy.  (30)

Aref

If we now write the deformed support A% = {y +
§Y;Vy € A}, then deformed convolution can be rewrit-
ten as

(f*g)(z /fx+y y)dy. (31)

We have thus managed to express these various convolu-
tions with the same formulation

(f*g)(x / [z +y)g(y)dy, (32)

where A, is either A" in the standard case, A‘;” in the
dilated case, A" in the entire deformable case, and A%/
in the deformable case. If we now break the weight shar-
ing assumption of any of these convolutions by introducing
modulation, we have mask numbers m,(y) € [0,1] that
multiply the kernel values g(y). As such, the convolutions
become

(f *g)(= /fx+y y)me(y)dy.  (33)

We can then define the distribution dm,(y) = m.(y)dy to
prove the theorem and show that all these convolutions per-
form weighted filtering on some neighbourhood A, sam-
pled with distribution dm,. O

C.2. On Modulation and Weight Sharing

We here further present and discuss modulation and how it
breaks the weight sharing assumption.

Weight Sharing. In order to provide deterministic sam-
pling locations, the modulation m.,(y) is not usually under-
stood in the literature as a probabilistic density from which
to sample kernel locations. Instead, it is rather viewed as
modulation density, or mask, depending on the location =,
that is applied to the k£ x k convolution weights at position
x. This means that instead of computing at location x the
convolution between the two functions f and g with varying
sampling distribution dm(y), the convolution uses a uni-
form sampling distribution dy but convolves between func-
tions f and each g, : y — g(y)m.(y) at point x, explaining
why the weights are not shared in modulation.

Additionally, implementation strategies of modulation
can further deviate from the weight sharing assumption, re-
moving ever more the essence of what makes a convolution.
There are essentially two main ways modulation is imple-
mented in existing works.

Modulating deformations. The first approach, as in [77,
80], is to encode the modulation as an array with as many
entries as kernel samples, i.e. k& x k values, that is to be
pointwise multiplied with the kernel weights. This strat-
egy does not aim to construct the modulation at all possible



continuous locations in the continuous kernel, but only fo-
cuses on the sampled locations, and by doing so it is not
constrained to any geometric prior. This implementation is
particularly useful for sparse sampling locations, when k is
small and the reference grid A" is heavily deformed. The
mask values are then generally constrained to [0, 1] and op-
timised in the training process. While this approach slightly
boosts performance, it is theoretically unnecessary, as ze-
roing out sample locations is less optimal that simply mov-
ing the filtered-out samples to better locations. In practice,
the resulting modulation tends to focus on sample locations
close to the original pixel, and filters out distant ones.

Modulating without deformation. Given the prior that
mask weights should decay with distance, the second way
to encode modulation is to define a parametric mask func-
tion satisfying the prior. This function defines the mask
weights at all possible continuous locations of the contin-
uous non-deformed kernel, and then needs to be queried at
the sampled locations of the discrete kernel. A famous ex-
ample is the FlexConv method [59] and its Gaussian mod-
ulation. Unlike the previous implementation, this approach
is tailored for large kernel sizes k x k, e.g. k = 25 instead of
k = 3, making it expensive, as it relies on a continuous per-
spective of kernels®. Importantly, in this strategy, the ker-
nels are not deformed in any way A = A%, By adopting
large kernel size and not deforming the kernel, the discrete
kernel densely approximates the continuous kernel. Instead
of explicit kernel deformation, Gaussian modulation, with
learnable mean and covariance, is then pointwise applied to
the kernel at each location x. This allows the operation to
focus more on a part of the kernel map at each pixel loca-
tion.

From our universal metric perspective, convolution op-
erations using modulation without deformations as in Flex-
Conv can be understood from two perspectives. The first
is that unit balls are always the same and large, equal to
the reference kernel A", but the sampling density is not
uniform. In particular, the implicit metric is the uniformly
scaled standard Riemannian metric. A more interesting per-
spective is to understand the unit balls of the implicit met-
rics to fit the elliptical effective support of the Gaussian ker-
nel, with scale given by the covariance and asymmetrically
offset by the mean. In this second perspective, we must re-
lax the unit ball sampling assumption with a sampling that
can extend beyond unit balls but with a smooth rather than
binary decay. This new perspective might mislead us into
thinking that such constructions are equivalent to our metric
convolutions, both offsetting and deforming a circle into an
ellipse, with FlexConv requiring to encode a larger global
weight map to be cropped. However, this is incorrect and a

®Tn fact, in FlexConv the kernel is encoded continuously with an im-
plicit neural representation via a Multi-Layer Perceptron.

Figure 9. Illustration of different modulation strategies. Each
image represents a kernel with weights given by the plotted tex-
ture. Left: reference kernel shape for standard convolution A™.
Its texture g is the reference weight map shared by all pixels.
Centre left: the reference kernel shape and its associated tex-
ture, i.e. the weights, are scaled, deformed, and shifted, resulting
in a different convolution support A # A’ but same convolu-
tion weights. This case covers the approaches mentioned in the
main manuscript, namely scaled, shifted, deformed, and our met-
ric convolutions. Centre right: Modulation is added to the de-
formed convolution kernels, following the implementation strat-
egy of [77, 80]. The weights of the kernel are preserved but
some are attenuated by some factor. Right: Modulation is added
by cropping the non-deformed reference kernel, e.g. via Gaussian
masking as in FlexConv [59]. This requires an original kernel that
is large enough, unlike the other methods, which is expensive. Ad-
ditionally, weights of the kernel at the effectively sampled regions
are no longer shared between points, even with binary modulation,
unlike in the other methods. This second implementation implies
that the statistics of the effective kernel weights are fundamentally
different from those using the first strategy.

major difference exists between both approaches.

We illustrate this discussion in Fig. 9. For explana-
tion clarity, binarise the Gaussian mask: only an ellipse of
weights are then considered. In metric convolutions or other
approaches deforming a reference kernel, these methods de-
form a reference kernel shape, e.g. a disk, and its texture
to provide a new shape, with identically deformed texture,
eventually modulated. On the other hand, in adaptive meth-
ods relying on modulation like FlexConv, the transforma-
tion is fundamentally different. In the second understanding
of this modulation, the reference kernel shape and its texture
are not deformed identically. Instead, a crop of a larger tex-
ture map is performed. This implies that there is no consis-
tency in the convolution weights at different pixel locations,
even in the simplified case where we binarise the Gaussian
weight mask. FlexConv-like modulation thus fundamen-
tally breaks the weight sharing assumption even more so
than other modulation techniques, putting into question the
“convolution” nomenclature of such methods.

C.3. Proof of Theorem 2

This result is well-known. It is a direct consequence of the
positive homogeneity of the metric (see Fig. 10). Assume
that the UTB B! (x) is given at any point z. Let u € T, X
be a non zero tangent vector. Then there exists a unique
v € Bi(x) that is positively aligned with w, i.e. there exists
A > 0 for which v = Au, that has unit metric F(v) = 1.
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Figure 10. Thanks to their positive homogeneity, Finsler metrics
are fully described by their unit tangent balls, which can be any
convex set due to the triangular inequality.

Note that v is the intersection of the ray with direction u
(with origin x) with the boundary of B¢(x). We can then
define F;(u) = A. We also define F;(0) = 0. We can
then easily check that F, satisfies the positive homogeneity.
Given any \' > 0, we have AN'u = X \v. By construction
of F,,, we thus have F,(\Nu) = N = N F,(u). As easily,
we can check that I, satisfies the triangular inequality and
separability. As such, the provided UTBs implicitly defines
a metric F,. O

C.4. Reconstructing a Metric from Unit Geodesic
Balls

Reconstructing the metric, or an approximation, is possi-
ble if further assumptions are introduced. For instance, if
we are provided with the knowledge of distances within the
unit ball, i.e. level sets within Bf (z), or if the unit ball is
sufficiently localised, i.e. BY () is sufficiently small (in Eu-
clidean distance) to be approximated by its projection onto
the tangent plane 77, X, then we can (approximately) recon-
struct the unit tangent ball at point  and from there use
Theorem 2 to recover the entire metric.

The issue for reconstructing metrics from UGBs is that
geodesic distances consist in an integration of the metric
along the tangents of the geodesics. By performing this
summation, we can lose local information on the original
metric. As an extreme counter-example, consider a small
sphere, with radius smaller than ﬁ, then the unit ball at
any point for the isotropic Riemannian metrics M = sl
with s < 1 will cover the entire sphere, and likewise, other
more complex metrics will provide the same unit ball. In
this simplistic example, recovering the underlying metric is
impossible without other prior knowledge.

C.5. Example of non-unique Metrics Explaining
Discretised Sample Locations

Given a discretised sampling of a unit ball, the underlying
continuous unit ball is ambiguous. As such, several met-
rics may provide continuous unit balls for which the given
samples provide a good covering of its unit ball. We here
provide two examples.

First, assume that we have finite samples and that an or-
acle provides us the information that these samples all lie
on the unit tangent circle of some metric, i.e. F},(u) = 1 for
each of these samples u. Then any convex closed simple
curve interpolating the provided samples yields a plausible
Finsler metric F,,.

In general however, we are not aware of the distance of
the sampled points within the unit ball. Sampled points do
not necessarily lie at the same distance from z and no or-
acle provides their distance. Consider the following exam-
ple. Assume we are provided with the reference template
A" with 3 x 3 samples. We want to interpret it as a nat-
ural sampling of the unit tangent ball of some metric. A
first natural possibility is to invoke the isotropic Rieman-
nian Euclidean distance, for which the unit ball is the round
disk’. Another possibility is to consider the traditional non-
Riemannian L°° metric yielding unit balls in the shape of
squares with straight edges parallel to those of the domain
axes. Unlike the isotropic Euclidean suggestion, in the L™
one the samples on the border of the convex hull of the sam-
ples all lie on the unit circle of the metric.

C.6. Implicit Metrics of Existing Convolutions

We provide in Fig. 11 an intuitive visualisation of the met-
rics used for existing convolution methods. All of them can
be well-approximated by adopting a tangent perspective to
unit ball sampling of implicit Riemannian (for standard and
dilated convolutions) or Finsler (for shifted and deformable
convolutions) metrics. Our metric convolutions explicitly
compute metrics and their unit balls, which then provide
analytical sampling locations.

D. Further Discussions on the Theory of Met-
ric Convolutions

Metric convolutions are versatile in their implementation,
via heuristic or learnable metric designs. When implement-
ing metric convolutions with learnable adaptive metric (see
Fig. 12), we apply an intermediate standard convolution to
learn a fixed number (5 to 7) of metric (hyper)parameters 7,
from which we then extract the Randers metric parameters
(M, w) at each pixel using simple 2 x 2 matrix operations.
From these parameters, we can then analytically compute

7Tt would be scaled so that the radius of the unit circle is in [v/2, 2) in
Euclidean measurements
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Figure 11. Traditional convolutions sample pixel neighbourhoods, which can be understood as implicitly sampling unit balls of implicit
metrics. Metric convolutions explicitly compute the metric and its unit balls, which are then analytically sampled. By using Randers
metrics, unit tangent ball (UTB) metric convolutions provide sampling neighbourhoods similar to those of traditional methods. Extreme
non-convex sampling neighbourhoods can be provided by unit geodesic ball (UGB) metric convolutions.

kernel sampling locations of the unit tangent balls in a sim-
ple closed form that will be used for the final averaging of
the metric convolution. The choice of standard convolution
as intermediate hyperparameter extractor echoes the design
of deformable [25, 80] and shifted [77] convolutions, pro-
viding a shift-equivariant metric convolution. A major dif-
ference though is that in these competing methods, the inter-
mediate convolution computes directly the offset sampling
locations, without any additional metric prior. Addition-
ally, as the offsets are independent for each kernel cell in
deformable convolution, the intermediate standard convo-
lution requires 2k2 output channels, making this operation
particularly costly as the kernel size grows. This contrasts
with our metric convolution, which requires a fixed number
of output channels for the intermediate convolution regard-
less of the number of kernel samples.

D.1. Computing the Metric from 5 Learnt Num-
bers: Cholesky Approach

The most general metrics we consider in this work are Ran-
ders metrics F, which are parameterised by (1, w), where
M (x) € R?*2 is a symmetric definite positive matrix and
w(x) € R? must satisfy |lw(z)|[rr-1(,) < 1. Here, we will
consider a unique location z, thus for conciseness, we drop
the explicit dependence on it.

This discussion explains how to compute the metric pa-
rameters 7y from 5 numbers using a Choleksy-based ap-
proach. Recall the fundamental linear algebra result that
symmetric definite positive matrices possess a Cholesky de-
composition and vice versa.

Proposition 3 (Cholesky decomposition). If M € R¥*d
is a symmetric definite positive matrix, then there exists
L € R¥™ that is lower triangular and with only positive
diagonal entries such that M = LLT.

In our case, we can reparameterise the Riemannian met-
ric matrix M with its Cholesky decomposition matrix L
requiring only three numbers instead of 4. On the other
hand, w needs two. As such, our metric convolutions re-
quire an intermediate operation to compute 5 numbers per
pixel location to fully describe the metric. By analogy with
deformable convolution, we chose to use a standard convo-
lution with only 5 output channels. Nevertheless, several
issues remain. First, we need to make sure that M does not
become singular. This can happen through uncontrolled op-
timisation if for instance the lower right entry L, > becomes
close to 0. Secondly, we need to enforce the norm constraint
on w for the metric to remain positive. To overcome these
challenges, we used the following strategy.

To avoid the non singularity of M, we construct L =
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Figure 12. Metric convolutions can be implemented for learnable adaptive metrics with a similar design to deformable convolutions relying
on an intermediate standard convolution. Instead of directly computing deformation offsets of the deformable convolution, which is costly
as it requires 2k2 output channels for the intermediate convolution for a k x k convolution, we compute metric hyperparameters, which
are a fixed number independent of the number of samples. From those, we can compute the metric and analytically sample unit tangent
balls with simple and cheap operations involving solely 2 x 2 matrix multiplications. The use of standard convolution as metric parameter

extractors, along with polar sampling schemes, makes metric convolutions a shift-equivariant operation by design.

L + €11, where [ is the identity matrix and e, > O is a
small number controlling the maximum scale of the metric®.
The Riemannian component is then given by M = LLT. In
our experiments, we chose e, = 0.01.

To enforce the positivity of the metric, we introduce an-
other hyperparameter ¢,, € (0, 1] and devise a strategy to
enforce ||w|/p;-1 < 1 — &,. This choice would guaran-
tee that the metric does not accumulate around 0 as then
F,(u) > &,]||ul|2 for any tangent vector u following Propo-
sition 1. Taking ¢, — 1~ forces metric symmetry, whereas
g€, — 0T allows the strongest asymmetry. Note that €, = 1
is equivalent to taking w = 0. The strategy is the follow-
ing. Compute ||w| -1 € [0,00), and feed it to a modi-
fied sigmoid function to get a new number in [0,1 — &p,).

Recall that the sigmoid is defined as o(z) = H% Our
modified sigmoid is thus 6(z) = 2(1 — &,)(o(z) — 3).

The computed number &(||w||p-1) € [0,1 — &) repre-
sents the desired M ~'-norm of the Randers drift compo-
F(llwllp—1)
llewllpg—1
arises though if we are learning the metric from data and

initialise with w = 0, as the square root has divergent gra-
dient at the origin. To avoid this issue, we replace the com-
putation of ||w|/3;-1 by the more stable Vw T M~1w + ¢,
where ¢ > 0 is a small number, typically ¢ = 10~°, that we
systematically use to avoid instabilities, e.g. divisions by 0.
As such, the modified drift component forming the metric
~ 2(1—e,)(o(\/wT M~lwte)—3) w

is @
\/wTAf*1w+6

nent. A such, we could take & = w. An issue

We summarise the approach in Algorithm 1. Thus, when
learning the metric, we use the metric defined by (M, o),
and performed gradient descent on the 5 parameters of L
and w (per pixel), which is possible since M and & are given
by differentiable operations from L and w.

8The smaller €, the larger the maximum scale, quadratically.

Algorithm 1 Metric computation from 5 numbers

Input: Five numbers Ly 1, L1 2, Lo 2, w1, w2
Hyperparameters: c;, > 0, ¢, € (0,1}, >0

Construct L = ’
(L2,1 Lyo

Compute L=L+ erl
Compute M=LLT
2(1—c.) (o(v/wT M—Twte)-1)

\/wTN[*1w+s

and w = (wy,wz) "

Comput w

ew =
Return (M, &)

D.2. Computing the Metric from 6 or 7 Learnt Num-
bers: Spectral Approach

The previous Cholesky-based implementation (Ap-
pendix D.1) sometimes suffers from instabilities during
training when combined with neural networks.  This
issue persisted when using an LDLT approach, where
LDLT = M and L is lower triangular with unit diagonal
entries and D is positive diagonal matrix. We here present
a more stable implementation to compute vy at the cost of
one or two extra numbers to encode the metric.

As in Appendix D.l, we work with Randers metrics
parametrised by (M, w) and focus on a unique location x,
allowing us to drop its explicit dependence on it for con-
ciseness. Recall the fundamental linear algebra result that
symmetric matrices can be diagonalised in an orthogonal
basis.

Proposition 4 (Spectral theorem). If M € R¥*? js a sym-
metric matrix, then M can be diagonalised in an orthogo-
nal basis. This means that there exists an orthogonal matrix
R € R™? and a diagonal matrix A such that M = RART .

As the dimensionality of the image surface manifold is
d = 2, we could encode the rotation matrix R by an angle
0 as R = (<0~ 5inf) Thus, only 3 numbers 6, A1, and

sinf cos6



A2 could suffice to encode M, as in the Cholesky approach.
However, regressing raw angle values is well-known to be
significantly harder than estimating their cosine and sine
values. This is due to periodic nature of angles: raw an-
gle values € and 27 — ¢ for small € > 0 have a large dif-
ference but they correspond to almost identical angles. In-
stead, given two unconstrained numbers » € R?, we con-
struct the rotation matrix R using R = Wﬁ(ﬁ | 71),

where 7 = r + ¢ to avoid singular R on rare instances’ and
7L = (=b,a)T if 7 = (a,b)".

Since M is also positive definite, then its eigenvalues
A1, ..., g forming the diagonal of A, are strictly posi-
tive. Given two unconstrained numbers A\; and Ay, we

could construct the eigenvalue matrix A = (’\01 XO ), where
2

Xi = |\i| + e fori € {1,2}. The Riemannian compo-
nent would then be given by M = RAR". This strategy
requires 6 numbers to compute the metric parameters +y.
However, we obtained marginally better results when
separating the scale of the eigenvalues, as it introduces reg-
ularisation on them. Let s be an additional unconstrained
number used to compute the scale of the eigenvalues. De-
noting \; = 1+ 2(c(X\;) — 3) = 20()\;) € [0,2] the
“unscaled” eigenvalues centred around 1, we compute their
scale as § = =wtEms 4 2 (0(s) — 1) (Spax — Smin) €
[Smin, Smax)>» Where Smin and Spmax are user-defined minimum
and maximum eigenvalue scales'’. In our experiments, we
took Smin = 0.1 and sy.x = 1.5. Finally we use the eigen-

values S\Z = A}§; to build the matrix A = (561 5? ) The
2

Riemannian component is then provided by M = RART.
This strategy, requiring 7 numbers to compute the metric,
is our preferred strategy and we only report results for this
implementation when referring to the spectral implementa-
tion.

For both strategies, we compute the linear drift com-

ponent from two unconstrained numbers w as in Ap-

F(llellpr—1)
Hw H M—1

satisfying the norm constraints for the positivity of the met-

ric. As we use the spectral approach for training stability,
we found that we can also improve stability and marginally
results by avoiding propagating the gradients through the

invert operation M ~!. To this end, we detach the gradient

(flwllpr=1)
HW H M—1

this strategy for all results reported in this work referring to

the spectral implementation.
We summarise the spectral approaches using either 6 or
7 numbers in Algorithms 2 and 3. Our preferred version

pendix D.l1. This means that we use w =

of the factor in the calculation of &. We used

9We add ¢ here as if rigorously 7 = 0, which happened in practice on
clean noiseless data like MNIST, then the vector would still be 0
leading to a singular matrix R.

10Recall that due to the inverse in Eq. (3), a smaller eigenvalue scale of
M leads to longer unit balls along that direction. For instance, a scale of
0.1 corresponds to stretching the ball to 10 pixels.

_r
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uses 7 numbers as it strongly encourages stability and leads
to comparable or marginally better results. All results pro-
vided in this work using the spectral approach use 7 num-
bers. Thus, when learning the metric, we use the metric
defined by (M ,@), and performed gradient descent on the
7 parameters encoding the metric parameters ~y (per pixel),
which is possible since M and @ are given by differentiable
operations from these 7 numbers.

In our experiments using a simplistic architecture — a
single convolution layer for denoising (Sec. 5.1), we did
not encounter stability issues and provide results using the
Cholesky implementation for computing metric parame-
ters v from 5 numbers. In our experiments using com-
plex architectures — well-established CNNs for classifica-
tion (Sec. 5.2), we strongly benefited from improved stabil-
ity and provide results using only the spectral implementa-
tion for computing the metric parameters -y from 7 numbers.

Algorithm 2 Metric computation from 6 numbers

Input: Six numbers r1, 72, A1, Ag, W1, Wa
Hyperparameters: ¢, > 0, ¢, € (0,1}, > 0
Letr = (r1,r9) "
Compute 7 =7 +eand 7| = (—7o,7) "
1 Tl
To T12

_(Iml 0
Construct A = ( 0 |>\2> +erl
Compute M = RART
2(1—sw)(0(\/m)—%)

\/wT]VI*IuJJrE

1
Construct R = TlaTe

Compute w w

Return (M, &)

Algorithm 3 Metric computation from 7 numbers

Input: Seven numbers 1, 73, A1, A2, S, W1, Wa
Hyperparameters: 0 < Smin < Smax, € € (0,1],6 >0
Letr = (r,7r9) "

Compute 7 = 7 + e and 7| = (—72,71) "

Construct R = m 2 ;i;

Compute \j = 20(\1) and N, = 20(\2)

Compute § = % +2 (U(S) - %) (Smax — Smin)

Compute A\; = \,3 and A2 = M5
Construct A = A = <)E)1 /{2)

Compute M = RART
2(1-c.) (o (/T M~ Twie)-})

\/wTM*1w+s

Compute

w= w
Return (M, o)
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Figure 13. Polar kernel sampling strategies for k x k samples when
k = 7. Left: grid sampling polar coordinates. Right: onion peel-
ing strategy, analogous to what is is done in the standard square
k x k grid. In both cases, the position of each sample is analyti-
cally given by a simple closed-form formula depending solely on
the Randers metric parameters v = (M, w).

D.3. Polar Kernel Sampling strategies

In the continuum, the support A, is given by the locations
syz(0,v) where s € [0,1] and 6 € [0, 27]. We design two
complementary approaches to sample k x k grid points, as
illustrated in Fig. 13.

Grid sampling. To provide a k x k sampled kernel, a nat-
ural approach is to uniformly grid sample s and 6 with a
k x k grid.

Onion Peeling. For very small k£ however, e.g. k = 3,
polar grid sampling undersamples angles, unlike standard
image convolutions using a regular k x k grid. For in-
stance, 8 angles are considered for £ = 3 in a regular grid.
To better compare with standard convolutions for small &,
we propose an onion peeling sampling strategy. A stan-
dard convolution sampling £ x k grid can be understood
as a succession of onion layers of pixels at L°° distance
k' € {0,...,| %52} from the central pixel. In the k'-th
layer, there are either 1 pixel if ¥ = 0 or 8%’ pixels for
k' > 1. We use this idea to design our onion peeling metric
sampling: we sample | *51 | +1 values s € [0, 1] uniformly,
and for each layer index k' € {0,..., %51}, we sample
either the original point ;, which is given by any 6, if &’ = 0
or 8k angles 6 € [0, 27) uniformly for &’ > 1.

In our denoising experiments (Sec. 5.1), we work with
larger k, thus we used a grid sampling strategy for them. In
our classification experiments using well-established CNNs
(Sec. 5.2), these neural architectures systematically rely on
3 x 3 convolutions, thus we utilized an onion peeling strat-
egy for them.

D.4. Differentiating our Metric Convolution

We focus on the continuous case from Eq. (4). Differen-
tiable changes of metric induce the variation of the unit ball
in

9y (0,7) 1 o

o TR oy e OV

Assuming that the convolution weights are fixed, i.e.
9(sy5(0,7v)) = go,s. differentiating the convolution with
respect to the metric parameters gives

0 * o " T
W(x) - /9 (3 ;Y) Vf(z+5y.(0,7))go,sdsdb.
(35)

Likewise, if the metric is fixed, dependence on the weights
is given by

of*g), \
Te,s(w) = f(x + sy=(6,7)) (36)

If needed, we can learn the parameters of the metric or
the values of the kernel by gradient descent on some loss
function L according to the dynamics

399,5 — oL

ot T Oge,s
9y _ _ 9L 37)
ot oy "

Naturally, we can generalise this to any descent-based opti-
misation algorithm and discrete optimisation steps.

We can easily extend this discussion to our discretised
version of Eq. (4).

D.5. Shift-Equivariance of Metric Convolutions

Denote 7; the shift-operator of vector ¢, defined as T;(f) :
2+ f(x —t). We say that the convolution of f with kernel
g is shift-equivariant if for any vector ¢, we have'' T;(f *
g) = (Te(f) * g). This means that shifting the input im-
age and applying the convolution operations yields the same
output image, albeit shifted by the same amount. Note that
when mentioning shift-equivariance in image convolution,
only periodic padding guarantees perfect shift-equivariance,
otherwise the operation is approximately shift-equivariant
with small differences arising at the borders of the image.
Generalising the argument for standard convolutions, we
here implicitly assume periodic padding, and the same is-
sue will arise for other types of common padding, such as
constant 0 padding. Let us formally prove Theorem 3.

Proof. First, the value of g at the cell with polar coordi-
nates (sz,6), where s, = sy.(6,7), is independent of x.
This implies that the convolution kernels g in metric con-
volutions have shared weights. Schematically, the discrete
k x k convolution kernel g is an array of k& x k values in-
dependent of x, that will be pointwise multiplied at each
location « with the k x k array of sampled values f(s, )
for the k x k sampled locations (s, 6), and then summed
together to yield the output convolution at x.

1Note that shift-equivariance should not be confused with shift-
invariance, which is defined as 7¢(f * g) = (f * g). Old terminology,
prior to the rise of deep learning, used to call shift-invariance what is now
properly called shift-equivariance.



Second, our metric parameters v are computed based
solely on shift-equivariant objects. For heuristic designs,
these objects can be image gradient or its norm, which
are naturally shift-equivariant. For the advanced learn-
able design, we use an intermediate standard convolution
to extract ~y directly. Since standard convolutions are shift-
equivariant, the computed array of metric parameters y at
all locations = will be shifted by the same amount as the
input image. In turn, this implies that the unit tangent balls
of our metric convolutions are shift-equivariant.

Third, thanks to the universal Cartesian coordinate sys-
tem of images, our sampling strategies are based on angles
6 with the horizontal axis of the image domain Q = [0, 1]2,
which is invariant to image shifts. This implies that our
sampling scheme will always sample the same location of
a given unit tangent ball, regardless of its position in the
image.

Combining these three properties, the output of the met-
ric convolution of a shifted image f with a kernel g will be
the same output as the original convolution with the same
kernel g, albeit shifted by the same shift amount. This
means that metric convolutions are shift-equivariant. O

D.6. On Difficulties for Fast Differentiable Unit
Geodesic Ball Computations

In contrast to the UTB case, computing the unit geodesic
balls (UGB) is expensive as it is not given by a simple
closed-form expression. It requires instead finding geodesic
curves and then integrating along them. Many approaches
exist for geodesic distance computations, and most of them
require solving differential equations. They are usually ei-
ther the Eikonal equation, which describes the propagation
of a wave front on the manifold, or the heat equation, as
initially heat diffuses along geodesics.

In the traditional Riemannian case, a wide variety of
solvers exist, even differentiable ones, such as the recent
differentiable fast marching algorithm [3, 4], Varadhan’s
formula [70] or the idea of [19] to flow heat initially in
one small time step, normalise the obtained gradient field
and interpret the normalised field as the tangential compo-
nents of the geodesics. Unfortunately, existing solvers are
too expensive to be used in reasonable applications, such
as a neural network module, and we would need to apply
these solvers at least as many times as there are pixels in the
image since distances are computed from the single starting
points x.

An extra layer of complexity arises when using the less
common Finsler metrics, for which even discretisation of
differentiable operators becomes tricky. We here discuss
some of these difficulties when using the idea from [19]. In
Randers geometry, deriving linear solvers to length-related
differentiable equations becomes highly non trivial. In the
Riemannian case, this is not an issue. For instance, the Rie-

mannian heat equation % = div(Vf) = —Apf is gov-
erned by the linear Laplace-Beltrami operator Ajy;. Many
works handle its possible discretisation strategies, such as
the popular cotangent weight scheme [27, 53]. The linear-
ity allows [19] to diffuse heat from a Dirac image §,, that
are one at pixel x and zero everywhere else, by solving a
set of linear equations to perform a single time-backwards
iteration (I — tAp;)d,, = d,. The time-backwards opera-
tion essentially imagines what the heat should look like after
a small time step should it have originated from the Dirac
image. A forward time difference scheme would struggle
to do so as the gradient of the image is zero almost every-
where, and in turn the Laplace-Beltrami operator, and so
almost no heat would be flown that way in a single step.
This elegant solution becomes highly non trivial in the Ran-
ders case. This is why in our metric UGB convolution, we
modify the approach from [19] and revert to many smaller
time forward iterations to flow heat. Also, as it is unclear
how to discretise operators in Randers geometry, we use a
local solution rather than the global one, which provides
an approximating solution satisfying some properties of the
differential equation.

D.7. Details on our Naive Implementation of our
Metric Unit Geodesic Balls Convolutions

Finding global solutions to the Finsler heat equation
(Eq. (22)) is difficult. However, we can easily provide local
solutions [55]. Local solutions merely satisfy some local
properties of the differential equation. Our local solution,
the Finsler-Gauss kernel h,, [55, 76], is explicit and is given
by

1 1  Frw)?

—e 4t

Z(x)t
where F is the dual Finsler metric and is equal to

the invert metric in the Riemannian case, and Z(z) =

N0 . :
;€ 4t dy is a normalisation factor. The dual metric

is beyond the scope of this paper so we refer to the Ap-
pendix A.4 for more details on it. We will just point out
that the dual of a Randers metric is also a Randers metric
with explicit parameters (M *,w*). We then perform a stan-
dard convolution using the Finsler-Gauss kernel to diffuse
the heat from a Dirac image J,, that are one at pixel x and
zero everywhere else, to produce the diffused Dirac image
0z, according to the update rule

(38)

O trar(x’) = /63:,1&(17/ + y)he (y)dy. (39)

We can then compute the normalised gradient field — ﬁ

to get the unit speed geodesic flow field, from which we
need to compute a unit ball. To get a differentiable sam-
pling A, we can flow a stencil of points A" close to x
given by PJ(s,6,0) = sosy.(0,~) where s is an optional



scaling factor and then flow for a fixed amount of time ac-
cording to %—f = 55;:“2. This deforms the stencil and
the obtained unit ball is no longer necessarily convex. If
the initial stencil is sampled using k& x k uniform polar grid
points by analogy with the UTB case, the obtained stencil
can be interpreted as covering the non convex unit geodesic
ball (or its approximation).

This algorithm is significantly cheaper than traditional
more accurate geodesic solvers, it is fully differentiable as
in particular the unit ball is not obtained via a thresholding
operation. However, it is still too costly to be used in real
scenarii such as neural network modules. For instance, if
the image has 256 x 256 pixels, we need to diffuse 65536
Dirac images of the same resolution and then flow 65536
sets of stencil. This either quickly occupies all available
memory in RAM for single modest commercial GPUs or
implies a slow sequential bottleneck for simply computing
a single convolution operation.

E. Experiments

E.1. Implementation Considerations of Heuristic
Geometric Designs of Metric Convolutions
and Other Methods and Results

We here show how to design sample locations from geom-
etry. We take uniform kernel weights 1%2 and no learning
is involved. We denoise the 256 x 256 greyscale camera-
man image using standard, dilated, and our metric UTB and
UGB convolutions, along with deformable convolution us-
ing random offsets due to their lack of interpretability.

As mentioned in the main paper, a natural desire for the
shape of unit balls when considering denoising is to be wide
along the orthogonal gradient direction V f(x)* and thin
along the image gradient V f (). This shape avoids blurring
out edges.

Unit Tangent Ball. In the UTB case, unit balls are eas-
ily given in closed form. We can thus sample them di-
rectly without having to pass through the dual metric. Our
anisotropic Riemannian metric of parameter M favours
the direction V f(x)* by taking it as an eigenvector with
smaller eigenvalue

IV £()]l=
L<1+amax”VfH2) 0
M(LE) :ng 0 L
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where ¢ = 0.1 controls the average metric scale'”, & = 100
is an anisotropy gain factor, and Ry, is the rotation matrix
V(=)
IVF(@)ll2+e
The small e = 1079 is added here for stability and to avoid

with angle 6, such that (cosf,,sinf,)’ =

12If V f () = 0 then ¢ = 0.1 creates a ball of 10 pixel edge radius.

dividing by O in uniform areas of the image. The image
gradient is computed using a Sobel filter of size 3 x 3.

It is legitimate to consider symmetric neighbourhoods
for denoising, i.e. w = 0. Nevertheless, we also tried asym-
metric metrics by controlling the scale of w. We first com-
pute

V@]
Vi@l +e

and then for various scales (1 — ¢,) € {0,0.5,0.9}, we
choose

w(x) 41

w(z)=(1- Ew)| (42)
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Unit Geodesic Ball. In the UGB case, our proof of con-
cept algorithm requires the use of the dual metric to guide
the heat flow of the Dirac images. After normalising this
initial flow, we reflow a stencil of points to obtain the sam-
ple locations. We use the same metric (M, w) as in the UTB
case, except that now o = 10 and ¢« = 1. From this metric,
we can explicitly compute (M*,w*) given Proposition 2.
For each pixel x, we diffuse the Dirac image J,,, equal to 1
at pixel x and 0 everywhere, until ¢ = 0.1 with time steps
dt = 0.01. This means that starting from §, we iteratively
convolved with the Finsler-Gauss kernel 10 times.

We then define a stencil of & x k points P(s,6,0) =
508Yz (0, (M*,w*))) with a uniform uniform grid of radial
values (s,0) € [0,1] x [0,27) sampled & x k times. The
stencil is to flow along the diffused Dirac image 6, ;. We
diffuse for the same amount of time as the heat diffusion
with the same time steps. Tuning sq is of interest but was
not searched, we simply took sy = 2. For small s, all
the points in the stencil will lie in the pixel x, and when
using bilinear interpolation they can decentre early from x
before this drift is magnified. This behaviour is compatible
with what is observed in deformable convolution. Too large
values of sy will place stencil points in areas with unreliable
normalised flow as they are at most barely reached by the
heat diffusion. Flowing is done using a simple time forward
scheme.

Our suggested implementation is fully differentiable but
prohibitively expensive from a space and time perspective
for more common application such as neural network com-
patibility. It merely provides a proof of concept of UGB
metric convolutions.

Unit Ball Plots. To improve visualisation in Fig. 5, we
slightly modified the hyperparameters in the UTB and UGB
case. In the UTB plots, we take a = 10. In the UGB
plots, diffusion of the Dirac image is done with time steps
dt = 0.1 until time ¢ = 0.5, whereas the stencil is flown
with time steps dt = 0.1 until time 1.



Details of Other Methods. All convolutions used in
Fig. 14 use k x k samples with £ = 11. Dilated convo-
lution has a dilation factor of 3. Deformable convolution
uses a dilation factor of 1 and each offset of each kernel cell
for each pixel location is randomly, independently, and uni-
formly chosen in [—%, £]2. Standard convolution covers a
k x k pixel area and lacks interpolation, which further fil-
ters out noise, yet our method employs it. For fairness, we
also test a non-standard interpolated convolution with k£ x k
uniform samples covering a fixed smaller area. In practice,
the interpolated standard convolution uses k£ x k uniform
samples in a 5 x 5 pixel area. We chose this area as it is a
common size of non interpolated standard convolutions. As
such, the interpolated standard convolution can be seen as a
standard 5 x 5 convolution equipped with the extra filtering
from interpolation. Note that interpolated standard convolu-
tions can also be understood as non-standard dilations with
dilation factor less than 1.

Results. Results in Fig. 14 show our metric convolutions
outperforming standard, dilated, and deformable convolu-
tion. Metric convolutions offer interpretability to flexible
convolutions and strong geometric adaptable priors benefi-
cial for basic tasks like noise filtering. The asymmetric drift
component w degrades performance for Gaussian noise fil-
tering but could be useful in intrinsically asymmetric tasks
like motion deblurring. Providing interpretable components
to neural networks is fundamental as most models funda-
mentally lack interpretability. This is even the case for the
simplest CNNs trained on the most simple tasks [22].

E.2. Learning Filtering on a Single Image

In this experiment, we learn convolution kernel shapes
for deformable and UTB convolutions with fixed uniform
kernel weights using the Cholesky-based implementation.
Learning is performed on a single noisy cameraman image
with varying noise levels o, € {0.1,0.3,0.5} and tested
on another noisy version of the same image with the same
noise level. Gradient descent on the Mean Squared Error
(MSE) loss is employed to optimise raw offsets and metric
parameters, rather than those provided by a standard con-
volution as we only operate on cameraman images. This
experiment evaluates if convolutions learn the image sur-
face structure or just overfit to random noise. Convolutions
use k x k samples with k € {5,11, 31,51, 121}, and train-
ing runs for 100 iterations. Surprisingly, both methods re-
quire high learning rates (of magnitude 10* to 10%), differ-
ing from typical rates or those in the original deformable
convolution works [25, 80]. A fixed learning rate did not
yield meaningful results in all setups, necessitating a search
for a good learning rate each time (see Appendix E.4 for
details).

Full quantitative performance is given in Tab. 6, where

we give the MSE on the train and test image, along with the
normalised generalisation gap Sysg = % We
also provide full qualitative results in Appendix E.5.

E.3. Training Details for Learning Filtering on a
Dataset

We trained all models using stochastic gradient descent for
100 epochs on the MSE loss with a learning rate chosen
through logarithmic grid search (see Appendix E.4) that is
the same for the sample locations and the kernel weights
following the default methodology of [25]. Training in-
volved various kernel sizes k € {5,11,31} on a single
small commercial GPU. For k& = 31, the batch size was
reduced to 4 to fit GPU memory, and was 32 otherwise.

E.4. Learning Rate Search for Denoising Convolu-
tion Filters

The learning rate for denoising convolution filters, whether
they be of deformable convolution or our metric UTB con-
volution, or having fixed or learnable kernel weights, were
found with a learning rate finder using a logarithmic grid
search on the train data for a single epoch [65]. We report
in Tabs. 7 and 8 the chosen learning rates.

E.5. Further Visual Results on Learning Convolu-
tions on a Single Image

We provide in Figs. 15 to 20 visual comparisons of learnt
deformable and metric UTB convolutions, when learning
only the shape of the convolution and keeping the filtering
weights fixed. These results correspond to the quantitative
ones in Tab. 6.

In each of these figures, two consecutive rows of plots
correspond to results with a fixed noise standard deviation
oy, and number of samples k x k for the convolution. Each
of these sets of two rows of plots are organised as follows.
Top left is the groundtruth image and bottom left is the train
and test MSE during training. Starting from the second col-
umn, the top row corresponds to train whereas the bottom
one refers to test. Starting from the second column, from
left to right: input noisy image, deformable convolution
result, our metric UTB convolution results with different
g, € {0.9,0.1} controlling the scale of w, with w = 0 for
€w = 1. Numbers provided correspond to the PSNR with
respect to the groundtruth image, with higher scores being
better.

Note that using an extremely high number of samples,
e.g. 121 x 121, does not increase the size of the sampling
domain for our metric UTB convolution as the unit ball
does not depend on the sample size. Larger kernels imply
more samples in the same unit ball. On the other hand, de-
formable convolution suffers from high number of samples
as it relies on the reference template of 121 x 121 pixels,
which in our experiments is half the image size in width. As



Standard
19.324

Dilated
15.939

Deformed

16.972

Figure 14. Denoising results using 11 x 11 samples from left to right: input, standard, dilated, randomly deformed, and metric convolutions
with e, = 1,0.5,0.1. The bottom standard convolution uses interpolation on a smaller area. For our metric convolutions, the top row uses
unit tangent balls, and the bottom row uses geodesic balls. Displayed values are the PSNR (higher is better).

Deformable

Unit tangent ball (ours)

£, =09 £, =0.1
N 5 11 31 51 121 5 11 31 51 121 5 11 31 51 121
0.1 2.00E-3 4.49E-3 1.46E-2 2.24E-2 5.49E-2 1.68E-3 1.57E-3 1.54E-3 1.54E-3 1.54E-3 1.60E-3  1.46E-3 1.44E-3 1.42E-3 1.41E-3
MSE 0.3 7.26E-3 8.97E-3 1.99e-2 2.83E-2 6.18E-2 8.13-3  7.43p-3 7.58E-3 8.64E-3 8.28E-3 8.108-3 7.32e-3 7.45e-3 7.52E-3 7.82E-3
0.5 7.86E-3 1.20E-2 2.23E-2 3.07E-2 6.50E-2 1.85e-2  1.68E-2 1.70E-2 1.70E-2 1.72E-2 1.84E-2  1.70E-2 1.73E-2 1.72E-2 1.71E-2

0.1
0.3
0.5

53
265
4554

3.0
74
971

1.6
28
210

1.3
18
113

0.9
6.6
35

0.6 0
1.1 0
0.8 1

Ouse

.5
9
3

0.7
1.1
1.8

0.7
0.8
2.0

0.7
1.2
2.2

0.7
1.3
1.3

0.6
1.1
1.3

0.7
1.3
1.6

0.9
1.4
2.1

1.1
1.5
2.9

Table 6. Denoising test MSE results (top) on a single noisy greyscale cameraman image when training on a different single noisy version,
with noise level o,,. Filters use k x k samples at each pixel location. Positional parameters of the convolutions are learnt, but weights are
fixed. We also give the normalised generalisation gap duse. The parameter €., € (0, 1] controls the tolerated amount of metric asymmetry,
with €, = 1 being symmetric. For all numbers, lower is better. Best test MSE are in bold, and second best are underlined.

such, in many pixel locations, the reference support over-
laps with the outside of the image, where it is padded to
0, which makes it impossible for gradient-descent based
strategies to learn meaningful offsets in such cases.

E.6. Implementation Considerations of CNN Clas-
sification

We here use the common ResNet terminology. All tradi-
tional ResNet architectures are a succession of layers. The
initial layer, sometimes called convl, has a single convolu-
tion module, along with other operations. Following the ini-
tial layer, comes a succession of four layers, named layerl,
layer2, layer3, layer4. Each of these layers consist in a se-
quence of convolution blocks. These blocks can be basic
for smaller networks like ResNet18, or bottleneck ones for
larger versions like ResNet50 and ResNet152. Each block
of a network has the same structure, up to a final pooling.
Basic blocks have two 3 x 3 convolution modules, whereas
bottleneck blocks have only one, when no downsampling
is involved. None of these convolutions have an additional
bias term. The first 3 x 3 convolution of the first block of ev-
ery layer has a stride of 2, whereas all the other have a stride
of 1. All convolutions use a dilation of 1 (no dilation).

In the experiments of Tabs. 3 and 4, we directly replace
only the 3 x 3 convolution modules with their 3 x 3 adaptive
counter-parts, i.e. deformable, shifted, and our UTB convo-

lution. We use the same number of input and output chan-
nels and no bias. Only the convolutions in layer2, layer3,
and layer4 are changed. Those in layerl or convl are un-
changed and remain standard. We also change the stride of
the first convolution of the first block of layer4 from 2 to 1
and to avoid decreasing the receptive field we increase its
dilation from 1 to 2. A dilation different from 1 impacts
the position of the reference kernel A’ of deformable and
shifted convolutions, and does not impact our metric convo-
lution. The methodology described here is a direct imitation
of that of [25, 77, 80]. However, unlike [77, 80], we do not
use modulation for simplicity as explained in the main pa-
per: we wish to preserve the weight sharing assumption and
sample uniformly the unit balls.

We propose to initialise our metric UTB convolution
modules in the following way. Denoting c;, the number of
input channels, kernel weights are initialised (and fixed in
FKW) to zy,, = Cm% As for the weights of intermedi-
ate standard convolution with 5 output channels computing
the metric parameters L1 1, L1 2, L2 2, wi, and wo in this
order, we initialise them as follows per output channel: the
first and third ones have uniform weights set to 2y ,,, and
the other ones are set uniformly to € = 1075, In particular,
this means that w =~ 0 initially, and the network must learn
how much asymmetry is best. For simplicity however, we
took w = 0 always, i.e. restricting the metric to Riemannian



Deformable

Unit tangent ball (ours)

ew =09 e, =0.1
. k 5 11 31 51 121 5 11 31 51 121 5 11 31 51 121
0.1 4.6e6 2.4e7 198 6.1E8 1.1E9 3785 4.0e5 4.585 S5.785 S5.7E5 2.585 3.0e5 4.085 4.0B5 6.0ES
0.3 1.5e6 7.486 6.0E7 1.98 9.8E8 1.0e4 1.0e4 1.0e4 1.2E5 1.485 1.0e4 1.0e4 1.0e4 1.0e4 1.1ES
0.5 5.785 2.986 2.487 7.6E7T 4.9E8 1.0e3 5.0e3 1.0e4 1.0e4 1.0e4 2.0e3 5.0e3 1.0e4 1.0e4 1.0e4

Table 7. Chosen learning rates for training the positional parameters on a single noisy image in the experiments of Tab. 6.

Deformable

Unit tangent ball (ours)

£w=0.1 £, =09
FKW LKW FKW LKW FKW LKW
ks 11 31 5 11 31 5 11 31 5 11 31 5 11 31 5 11 31
Tn
0.1 5782 3.483  1.0E4 1.OE-2  1.0E-2  6.6E-4 6.0E0  3.1E0  7.0E-1 1.0E-2  1.0e-2 1.0E-3 6.1E0  1.1E0  1.0E0 5.0e-2 1.0e-2 1.0E-3
BSDS300 0.3 3.2E2 1.583 1.0e4 1.0E-2  1.0E-2  6.6E-4 1.OEO  1.0E-1  1.0E-1 1.0E-1  1.0E-2  1.0E-3 1.0EO  1.1E0  1.0E-1 1.0E-2  1.0E-2  1.0E-3
0.5 2562 1.53 1.0E4 1.0E-2  1.0E-2  6.6E-4 6.1E-1  3.2B-1 4.5E-2 1.0E-2  1.0E-2  1.0E-3 1.0E0  3.88-1 3.1E-2 1.0E2  1.0E-2  1.0E-3
0.1 4.1E2 4.0E3 4.0E3 1.0e-2  1.0E-2  1.0E-3 1.2E1 4380 5.0E-2 1.0E-1  1.0e-2  1.0E-3 1.4E1 1.5E0 1.0E0 1.0e-2  1.0E-2  1.0E-3
PASCALVOC 0.3 3.0E2 4.0E3 4.0E3 1.0e-2  1.0E-2  1.0E-3 1.5e0  1.0E-1  5.0E-2 1.0E-2  1.0e-2 1.0E-3 4.0E0  5.0E-1  1.0E-1 1.0E-1  1.0E-2 1.0E-3
0.5 4.1E2 1.1E3 4.3g3 1.0e-2  1.0E-2  1.0E-3 4.3g-1 1.0e-2 1.0E-2 1.0E-2  1.0E-2 1.0E-3 8.1E0  3.8E-1 1.0E-2 1.0E-2  5.0E-3 1.0E-3

Table 8. Chosen learning rates for training the positional parameters on noisy image datasets in the experiments of Tab. 2.

ones, by taking €, = 1. We also took €, = 0.01.

Like in the previous experiments, we test both fixing
the kernel weights (FKW) of the non-standard convolutions
to uniform values and learning only the sample locations,
or learn simultaneously sample locations and the weights
(LKW). Note that FKW has never been tested in the com-
munity of non-standard convolutions for neural networks.
Prior works [42] start only with pretrained weights, up to
module conversion, obtained on ImageNet [26] classifica-
tion with vanilla modules. We argue that such a method-
ology does not properly reflect the strengths of convolu-
tions with changeable supports. Indeed, we only switch a
convolution with another one, thus the obtained network is
still a CNN, albeit non-standard and theoretically more gen-
eral. It should thus still provide good results when weights
are learned from scratch. We thus train either from scratch
(SC) or do transfer learning (TL) by starting from pretrained
weights obtained on ImageNet.

All networks are trained for 240 epochs with the Adam
optimiser [37] on the cross-entropy loss. We take a batch
size of 128, a base learning rate of n = 0.0001, and we use
cosine annealing [50] for scheduling the learning rate with
maximal temperature Ti,,x = 240 as is commonly done.
Following the common practice, images fed to the networks
are centred and normalised following the dataset mean and
standard deviation. When training on CIFAR with a sin-
gle GTX 2080 Ti GPU, our metric CNN takes 7h and uses
1021MB GPU memory, compared to 5.5 hours and 940MB
for a CNN using deformable convolutions (see Tab. 9). Al-
though more expensive than deformable convolution, it is
still faster than FlexConv while providing superior perfor-
mance Tab. 10. Note that our unoptimised code leaves room
for improvements. Optimising our code (e.g. fused CUDA
kernels or C level code) could greatly improve speed. To re-
duce memory usage, analytical offsets (and the convolution

Memory (MB) Time (s)
FlexConv - 127
Deformable 940 83
Metric UTB (Ours) 1021 105

Table 9. Peak GPU memory used and single epoch training time
on CIFAR. FlexConv training time is taken from Tab. 3 in the
original paper [59] for its best neural network FlexNet-16, but
its maximum GPU utilisation is not reported there. Our method
uses comparable memory to the more general deformable convo-
lution but is slightly slower. Nevertheless, it is faster than the even
more general FlexConv, while providing superior performance
(see Tab. 10), even though FlexConv uses large convolution ker-
nels with weights computed from expensive MLPs and then mod-
ulated by Gaussian masks.

result) could be computed in a small loop rather than be-
ing loaded simultaneously in memory, unlike in deformable
convolution.

Note though that although we only used fairly small
datasets due to our technical limitations, they are neverthe-
less large enough to provide valuable insights [21, 23].

For all datasets, including both train and test splits, in-
put images are first normalised according to the training
dataset’s mean and standard deviation. Since MNIST and
Fashion-MNIST are curated datasets with objects centred
and roughly aligned, we do not need data augmentation to
train the models. However, the natural images in CIFAR-10
and CIFAR-100 are not, and therefore we apply data aug-
mentation on training images by randomly cropping the in-
put image to a patch, resizing the patch to the full image
size, and then randomly horizontally flipping the image.

All CNNs with our metric UTB convolutions use the
onion peeling sampling polar kernel sampling strategy (Ap-
pendix D.3) and the metric computation from 7 numbers



MNIST CIFAR10

FlexConv 99.7+£ 0.0 92.2 (£0.1%)
Metric UTB (Ours) 99.71 93.1 (£0.1%)

Table 10. Reported performance of FlexConv from the original
paper [59] (Tabs. 3 and 9) with their best model FlexNet-16, com-
pared to our metric UTB convolution CNN. Although our network
only uses 3 X 3 convolution samples and we did not use any modu-
lation, our method outperforms FlexConv even though it is signifi-
cantly more complex and expensive Tab. 9, requiring large convo-
lution kernels, and thus high number of k, while also using Gaus-
sian modulation. FlexConv results are averaged over three random
seeds, whereas ours uses one on MNIST (}) and eight on CIFAR.
Our performance corresponds to those in Tabs. 3 and 4 with pre-
cision rounded to the first decimal, like the results reported for
FlexConv [59].

(Algorithm 3), except for those with fixed kernel weights
(FKW) which use the version with 6 numbers (Algo-
rithm 2). On CIFAR-10 and CIFAR-100, we got marginally
better results when training the networks with learnable ker-
nel weights (LKW) using an L1 regularisation loss on the
weights of the intermediate convolutions with a Lagragian
coefficient of 5000. On CIFAR-10 with learnable weights
and transfer-learned (LKW-TL), we got even slightly bet-
ter results when using 50 warmup epochs, where during the
warmup the output of the intermediate convolution is mul-
tiplied by 0. This warmup imitates the baseline sampling
strategy of a fixed kernel while still using our metric frame-
work.

E.7. Further Ablation Experiments of CNN Classi-

fication
ResNet18 ResNet50 ResNet152
Standard 73,61 (£0,31%) 79,06 (£0,29%) 79,86 (0,30%)
Deformable 73,55 (£0,26%) 78,15 (£0,25%) 79.73 (0,41%)
TOP1  ghified 73,15 (0, 17%) 78,33 (+0,32%) 79,70 (40, 35%)

Randers 74,20 (£0,58%) 179,17 (£0,60%) 80,56 (0, 30%)
Riemann 74,19 (£0,68%) 79,11 (£0,44%) 80,27 (0, 43%)
Standard 91,83 (+0,20%) 94,76 (+0,17%) 94,53 (0,22%)

91,50 (0,23%) 94,08 (£0,17%) 94,51 (0,23%)

91,37 (£0,15%) 94,16 (+0,15%) 94,30 (0, 15%)
Randers 92,31 (+0,36%) 94,85 (+0,34%) 94,94 (+0,32%)
Riemann 92,26 (£0,28%) 94,81 (£0,19%) 94,75 (0, 23%)

Metric UTB (Ours)

Deformable
TOPS  gpifted

Metric UTB (Ours)

Table 11. Mean test accuracies of different ResNet architectures
with replacement of convolutions only in the last layers (layer4),
using either standard or non-standard convolutions, with 10 inde-
pendent runs per configuration. Higher is better. In parenthesis is
the standard deviation (lower is better).

We here present additional ablation experiments on
CIFAR100 evaluating a different replacement strategy for
non-standard convolution layers and the use of Riemannian
metric convolutions instead of Finsler ones.

Replacement layers. There is no standard practice for se-
lecting which convolution layers of the CNN to replace with
non-standard convolutions. However, it is common in the
field to focus on deeper layers. Our design presented in
the main paper and in Appendix E.6 follows the strategy
of deformable convolution v2 [80], which expands on the
original version [25], where only the very last layers were
replaced. While the original work [25] found worsening
or diminishing returns when replacing more layers, [80] ar-
gued this was due to the simplicity of the task and showed
benefits when scaling up. To avoid misleading conclusions,
we adopted the broader replacement strategy of [80] in the
main paper.

That said, our tasks are simple, and replacing only the
last layers, similar to [25] and also [42], would likely
improve both speed and memory footprint while slightly
boosting performance on these simple small-scale tasks.
However, this might not reflect large-scale behaviour. Nev-
ertheless, in Tab. 11, we report CIFAR100 (LW-TL) results
over 10 runs with this modified setup, where only the convo-
lutions in layer4 are replaced, and we also test larger mod-
els. Similar to [25], we obtain better performance when re-
placing only the last convolution layers. However, we cau-
tion against generalising this result to larger scale problems,
similar to what happened with deformable convolution [80].

As for full replacement, it is uncommon in the field.
Even the recent advanced v3 version of deformable con-
volution — Internlmage [71] tailored for large-scale founda-
tion models — has first standard convolutions for shrinking
the resolution, and also uses them for downsampling be-
tween deformable blocks. In summary, full replacement is
not done due sub-optimal performance, high memory cost
from early high-resolution features, as offsets are computed
per pixel, and redundancy in adapting low-level filters, e.g.
edge filters. Later layers capture more complex, semantic
features and benefit more from sampling location adapta-
tion. On small tasks, early layers pretrained on ImageNet
are more robust, so replacing only final layers, which are
more task-dependent, is preferable. Replacing earlier lay-
ers is more interesting as the task scales.

Riemann or Finsler metric convolution. Unlike stan-
dard and dilated convolutions, shifted and deformable con-
volutions sample asymmetrically around each pixel, requir-
ing asymmetric metrics, i.e. Finsler, in our theory to off-
set unit balls (Figs. 1 to 3 and 11). We use Randers as
Finsler metrics for their simple parametric form that gener-
alises Riemannian ones. However, we can also use symmet-
ric metrics for our metric convolutions, such as Riemannian
metrics, i.e. w = 0 or in our implementation ¢,, = 1. We
present the mean test classification performance obtained
with Riemannian metric convolutions in Tab. 11, when re-
placing only the convolutions in the last layers (layerd).



As expected, performance degrades slightly from using the
more general Randers metric. However, our symmetric Rie-
mannian metric convolutions outperform the theoretically
more general asymmetric deformable and shifted convolu-
tions. This further proves that adopting an explicit metric
perspective to convolution is beneficial and induces a pow-
erful geometric regularisation.
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Figure 15. Results of learnt deformable and our metric UTB convolutions with o, = 0.1 and k = 5,11, 31, from top to bottom.
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Figure 16. Results of learnt deformable and our metric UTB convolutions with o, = 0.1 and k = 51, 121 from top to bottom.
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Figure 17. Results of learnt deformable and our metric UTB convolutions with ¢,, = 0.3 and k = 5, 11, 31 from top to bottom.
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Figure 18. Results of learnt deformable and our metric UTB convolutions with o, = 0.3 and k = 51, 121 from top to bottom.
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Figure 19. Results of learnt deformable and our metric UTB convolutions with ¢,, = 0.5 and k = 5, 11, 31 from top to bottom.
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Figure 20. Results of learnt deformable and our metric UTB convolutions with ¢,, = 0.5 and k = 5,11, 31 from top to bottom.
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