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Abstract

Existing handwritten text generation methods primarily fo-
cus on isolated words. However, realistic handwritten text
demands attention not only to individual words but also
to the relationships between them, such as vertical align-
ment and horizontal spacing. Therefore, generating en-
tire text line emerges as a more promising and compre-
hensive task. However, this task poses significant chal-
lenges, including the accurate modeling of complex style
patterns—encompassing both intra- and inter-word rela-
tionships—and maintaining content accuracy across nu-
merous characters. To address these challenges, we pro-
pose DiffBrush, a novel diffusion-based model for hand-
written text-line generation. Unlike existing methods, Diff-
Brush excels in both style imitation and content accuracy
through two key strategies: (1) content-decoupled style
learning, which disentangles style from content to better
capture intra-word and inter-word style patterns by using
column- and row-wise masking; and (2) multi-scale content
learning, which employs line and word discriminators to
ensure global coherence and local accuracy of textual con-
tent. Extensive experiments show that DiffBrush excels in
generating high-quality text-lines, particularly in style re-
production and content preservation. Code is available at
https://github.com/dailenson/DiffBrush

1. Introduction

Handwritten text generation aims to automatically synthe-

size realistic handwritten text images that visually convey a

user’s personal writing style (e.g., text slant, stroke width,

ligatures) while ensuring the content readability. This task

has broad applications, including assisting individuals with

writing difficulties, accelerating handwritten font design,

and enriching data for text recognizer. Most existing meth-

ods [1, 3, 7, 11, 12, 35, 44] focus on generating handwritten
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Figure 1. Comparison of handwritten text-lines (a) written by real

writers, and (b) assembled with isolated words generated from

One-DM [7]. The latter one applies fixed inter-word spacing due

to the lack of spacing information in generated words. Red lines

indicate the baseline (i.e., the reference line at the bottom of the

characters), while blue lines highlight word spacing.

images at the word level, with few efforts [9, 23] exploring

the generation of complete text lines. To bridge this gap,

our work focuses on high-quality handwritten text-line gen-

eration with better control over both style and content.

Most previous state-of-the-art methods [7, 12, 40, 44]

focus on handwritten word generation by using reference

images from writers as style inputs and conditioning on

character-wise labels or images for content. This allows for

the synthesis of handwritten words with controllable styles

and specific content. However, as shown in Figure 1, gen-

erating text at the word level cannot effectively capture the

cohesive style of a complete text line: (1) Humans generally

maintain consistent vertical alignment across words, while

synthesized words often exhibit arbitrary vertical position-

ing. (2) Different writers have unique word spacing charac-

teristics that are often lost in isolated word generation.

Direct approaches for text-line generation are relatively

limited, with two notable GAN-based methods proposed.

TS-GAN [9] optimizes a global content recognition loss

based on the entire generated text-line image, primarily

guiding content learning while implicitly influencing style

learning. CSA-GAN [23], in contrast, leverages both a con-

tent recognition loss and a writer classification loss com-

puted from the generated text-line image, thus better mod-

eling style through writer identity supervision. However,

both methods suffer from two key limitations: 1) Ineffec-
tive style extraction: Since both methods jointly optimize

content and style from the same model output, the two as-

pects interfere with each other, preventing effective learn-
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Figure 2. (a) This style reference exhibits rich style patterns, e.g.,

ligatures, spacing, and vertical alignment alongside undesired con-

tent information: “popular victory with”. (b) Random masking

disrupts both style features and content information. (c) Column-

wise masking maintains style patterns (e.g., character style and

vertical alignment) while removing horizontal content informa-

tion. (d) Row-wise masking preserves joins and spacing while

disrupting vertical content.

ing of either. For instance, minimizing content recogni-

tion loss inevitably pushes these models to produce eas-

ily recognizable outputs with simplified styles (e.g., regu-

lar fonts and standard strokes, as shown in Figure 9), ulti-

mately hindering the faithful mimicking of diverse hand-

writing styles. 2) Difficulty in maintaining character-
level accuracy: Ensuring the readability of text lines with

numerous characters remains challenging. For instance, in

datasets like IAM [36], where a single text line averages

42 characters—approximately six times the length of a typ-

ical word. Optimizing content loss at the text-line level

encourages global correctness but may fail to preserve in-

dividual character accuracy, making it difficult to maintain

content integrity across the entire generated text (cf. DCER

and DWER columns in Table 1).

To generate handwritten text lines with improved con-

tent accuracy and style fidelity, we introduce DiffBrush, a

novel diffusion-based approach. Our method incorporates

two key strategies: (1) content-decoupled style learning,

and (2) multi-scale content learning.

Content-decoupled style learning aims to disrupt content

information of style references while preserving key style

patterns. This eliminates content interference, thus achiev-

ing effective one-shot style learning (cf. Table 1 and Fig-

ure 6). A naive approach, such as random masking, fails

as it disrupts both content and key style features like word

spacing and vertical alignment (cf. Figure 2(b)). To address

this, we propose column- and row-wise masking (cf. Fig-

ure 2(c), (d)), which selectively disrupts content while pre-

serving critical style patterns. For style enhancement in ver-

tical direction, as shown in Figure 3, we apply column-wise

masking to the extracted style features, maintaining verti-

cal alignment while removing horizontal content informa-

tion. A Proxy-NCA loss [25, 38] is then used to enforce

style consistency within writers while distinguishing dif-

ferent writers, enabling the vertical enhancing head to re-

fine vertical alignment. For style enhancement in horizontal

direction, row-wise masking preserves word and character

spacing while disrupting vertical content, allowing the hor-

izontal enhancing head to reinforce horizontal spacing pat-

terns. This novel masking strategy effectively disentangles

style from content, enabling more accurate and independent

style representation in handwritten text-line generation.

Multi-scale content learning seeks to enhance content ac-

curacy at both global and local levels: at the global level, we

preserve character order within a text line to maintain con-

textual relationships between characters, while at the local

level, we ensure the structural correctness of each individual

word. To achieve this, we develop a novel multi-scale con-

tent discriminator. The line content discriminator segments

the text-line image and processes it with a 3D CNN [55]

to capture global contextual relationships, encouraging the

generator to maintain proper character sequencing. Mean-

while, the word discriminator employs an attention mech-

anism to isolate individual words and verify their content

accuracy, guiding the generator to refine local text content.

Our empirical results (cf. Figure 7) show that this multi-

scale content discriminator significantly improves content

accuracy without hindering style imitation quality.

Our main contributions include: (1) To the best of our

knowledge, DiffBrush is among the first to leverage diffu-

sion generative models for handwritten text-line generation.

(2) DiffBrush introduces a novel content-decoupled style

learning strategy that significantly enhances style imitation,

along with a new multi-scale content learning strategy that

boosts content accuracy. (3) Extensive experiments on two

popular English handwritten datasets (cf. Table 1 and Fig-

ure 6) and one Chinese dataset (cf. Figure 11) demonstrate

that DiffBrush significantly outperforms state-of-the-arts.

2. Related Work
Handwritten text generation methods are generally divided

into online and offline: the former synthesizes dynamic

stroke sequences, while the latter generates static text im-

ages. With the advancement of deep learning, Transformer

decoders [6] and diffusion models [8, 34, 47] have been

used for synthesizing online handwritten text. However,

as highlighted in recent studies [3, 7, 44], online methods

require temporal data (e.g., coordinate points and writing

orders) collected from a digital stylus pen and cannot syn-

thesize stroke width, ink color like offline methods. In light

of this, this paper focuses on offline handwriting generation.

The advent of Generative Adversarial Networks [20, 33]

has accelerated the development of offline handwritten text

generation. Early works [1, 11] use character labels as con-

tent inputs and random noise as style inputs to synthesize

handwritten words with controllable content and random

styles. To enhance style control, SLOGAN [35] conditions

style inputs on fixed writer IDs but fails to mimic unseen

styles. Unlike them, GANwriting [22] and HWT [3] em-

ploy CNN or transformer encoder to extract style features

from style references and are thus capable of imitating any

styles. Further, VATr [44] utilizes symbol images as con-

tent representations, enabling character generation beyond
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Figure 3. Method overview. Our DiffBrush consists of a conditional diffusion generator, a content-decoupled style module, and multi-

scale content discriminators. The style module extracts two enhanced style features Shor and Sver , which are blended with the content

representation Q from the content encoder to construct the condition vector c. This condition is then used to guide the denoising process

to generate images. To enhance style learning, we explore column- and row-wise masking to effectively eliminate content interference in

style modeling. The content discriminators provide feedback at both line and word levels, enhancing the readability of generated text. The

slice operation divides the text-line image into horizontal segments, while the attend operation locates word positions in the text-line.

the training charset. In contrast to the above word-focused

methods, TS-GAN [9] and CSA-GAN [23] are developed

to synthesize handwritten text-lines. However, they strug-

gle to produce satisfactory results due to design drawbacks

in style learning and content supervision.

The rapid development of diffusion models [10, 19, 28,

58, 60] offers new potential for handwritten text generation.

However, some early attempts [39, 67], which condition de-

noising process on fixed writer labels, cannot mimic unseen

handwriting styles. To address this, DiffusionPen [40] and

One-DM [7] extract style information from reference im-

ages, and then merge this information with the textual con-

tent to guide the denoising process. However, regarding text

content readability, One-DM simply incorporates a text rec-

ognizer with a CTC decoder, while DiffusionPen neglects

this challenge entirely. Different from them, we propose

a novel multi-scale content learning strategy, significantly

enhancing text content readability. Moreover, previous dif-

fusion methods [7, 39, 40, 67] focus on generating isolated

words whereas our DiffBrush aims for entire text-line gen-

eration. We discuss more related works about diffusion

methods for general image generation in Appendix A.

3. Problem Statement and Preliminaries

Problem statement. Given a text string A and a style ref-

erence si randomly sampled from an exemplar writer wi ∈
W , we aim to synthesize a handwritten text-line image x
that captures the unique calligraphic style of wi while accu-

rately preserving the content of A. Here, A = {ai}Li=1 rep-

resents a sequence of length L, where each ai is a Unicode

character, including lowercase and uppercase letters, digits,

punctuation. The key challenges lie in accurately capturing

handwriting styles, including both intra- and inter-word pat-

terns from the style reference, while ensuring the readability

of text-lines that typically contain numerous characters.

Conditional diffusion model. The diffusion model [17]

generates realistic images by progressively denoising a ran-

dom Gaussian noise input. To achieve controllable genera-

tion, the conditional diffusion model [4, 49, 62–64, 66] in-

corporates a condition signal c to guide the denoising pro-

cess. Starting from pure Gaussian noise xT ∼ N (0, I),
a denoising network pθ iteratively refines the image over

multiple timesteps to produce the target image x0. The

network pθ, typically based on a U-Net architecture [50],

integrates c via cross-attention or adaptive modulation lay-

ers. The training objective minimizes the mean squared er-

ror (MSE) between the predicted and real images: Ldiff =
Ext,c

[‖x0 − xreal‖2
]
. By leveraging condition signals such

as text prompts and reference images, conditional diffusion

models enable fine-grained control over the generation.

4. Method
4.1. Overall Scheme
To generate handwritten text-lines with enhanced content

accuracy and style fidelity, we propose DiffBrush, a novel

conditional diffusion generation method. As shown in Fig-

ure 3, the architecture of DiffBrush consists of three main

components: content-decoupled style module, conditional

diffusion generator, and multi-scale content discriminators.

The content-decoupled style module ξstyle aims to better

capture the text-line styles of exemplar writers. To achieve

this, we introduce a content-decoupled style learning strat-

egy (cf. Section 4.2), which leverages two novel content-

masking techniques and a style learning loss Lstyle to en-

hance text-line style modeling (cf. Figure 3). The extracted

style features are then fused with content features from a

content encoder to form the condition vector c within a

blender module. Both the content encoder and blender mod-

ule are designed based on One-DM [7], with further exten-

sions (cf. Appendix B for details). Guided by c, the condi-
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Figure 4. Style learning via column- and row-wise masking. (a) An improved vertical style feature Sver is extracted by the vertical

enhancing head, guided by a vertical loss Lver . Specifically, during training, we begin reshaping Sver into spatial feature Ŝver and

perform column-wise masking on Ŝver . After average pooling, s+c is drawn closer to its corresponding writer proxy pc, while the negatives

s−c belonging to different writers are pushed away by pc. (b) Similarly, a style feature Shor is extracted by the horizontal enhancing head.

We reshape Shor and conduct row-wise masking. After pooling, s+r is linked to its writer proxy pr , and negatives s−r are pushed away.

tional diffusion generator G performs denoising process to

synthesize realistic handwritten text-line image x0.

However, training the generator G with solely the diffu-

sion loss Ldiff is insufficient to ensure the content read-

ability of generated text lines. To address this, we introduce

a multi-scale content learning strategy (cf. Section 4.3).

Specifically, we develop a multi-scale discriminator D to

evaluate the content correctness at both the line and word

levels, thus providing more fine-grained content supervision

Lconent for content adversarial learning between G and D.

To summarize, the overall training objectives of our Diff-

Brush combines all three loss functions:

LG = Ldiff + Lstyle + λLcontent, (1)

where λ serves as a trade-off factor, and we empirically set

it to 0.05 in training.

4.2. Content-decoupled Style Learning
As discussed in Section 1, text-line style learning is hin-

dered by content interference, leading to ineffective style

extraction. To address this, we propose to disrupt content

information (by masking) to eliminate content interference

during style learning, forcing the model to focus on essen-

tial style patterns. Specifically, as shown in Figure 3, style

samples are first processed by a CNN-Transformer style

encoder to obtain an initial style feature S with rich calli-

graphic attributes. To refine style representation, we intro-

duce two dedicated style-enhancing heads, each incorpo-

rating a standard self-attention layer to extract fine-grained

style features: Sver (vertical) and Shor (horizontal). These

features are learned by using row- and column-wise mask-

ing for content disruption. The overall content-decoupled

style loss Lstyle is formulated as the sum of a vertical en-

hancing loss Lver and a horizontal enhancing loss Lhor:

Lstyle = Lver + Lhor. (2)

Vertical style enhancing via column-wise masking. The

vertical enhancing head aims to enhance style learning

in the vertical direction (e.g., vertical alignment patterns)

via column-wise masking. Specifically, as shown in Fig-

ure 4(a), we perform masking on Sver by first reshaping

the sequential feature Shor back into spatial feature Ŝver ∈
R

h×w×c. We then divide Ŝver into several columns and

randomly mask a subset of columns with equal probability

to obtain an average feature sc ∈ R
h×n×c, where n = w · ρ

and ρ is the masking ratio. After column-wise masking, we

adopt a Proxy-NCA loss [25, 38] for style learning, which

enforces style consistency within writers while distinguish-

ing different writers. Specifically, our vertical enhancing

loss Lver assigns a proxy to each writer, treating it as an an-

chor to cluster the masked style features of the same writer

while pushing apart those of different writers:

Lver =
1

|P+
c |

∑

pc∈P+
c

log

⎛
⎝1 +

∑

sc∈S+
c

e−f+
c

⎞
⎠+

1

|Pc|
∑

pc∈Pc

log

⎛
⎝1 +

∑

sc∈S−
c

ef
−
c

⎞
⎠ , (3)

where Sc = {sic}Ni=1 is a batch of masked style features,

Pc denotes the set of proxies of all writers, and P+
c refers

to the set of writers present in the current batch. For each

proxy pc, Sc is divided into a positive set S+
c , consisting

of sc from the same writer as pc, and a negative set S−
c =

Sc − S+
c . The similarity between positive pairs is f+

c =
α(g(sc, pc)− δ) for sc ∈ S+

c , and that of negative pairs

is f−
c = α(g(sc, pc) + δ) for sc ∈ S−

c , where g(·) is the

cosine similarity, δ > 0 is a margin and α is a scaling factor.

Horizontal style enhancing via row-wise masking. The

horizontal enhancing head aims to enhance style learning

in the horizontal direction (e.g., word and character spac-

ing) via row-wise masking. As shown in Figure 4(b), the

masking operation is conducted in a similar way as column-

wise making. Specifically, we reshape the sequential fea-

ture Shor back into a spatial feature Ŝhor ∈ R
h×w×c and

then conduct random row-wise masking to obtain sr ∈
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then input these words, along with corresponding content guidance, into Dword for realism discrimination.

R
m×w×c, where m = h · ρ. Our horizontal enhancing loss

Lhor pulls the masked style features of the same writer to-

gether while pushing those of different writers apart:

Lhor =
1

|P+
r |

∑

pr∈P+
r

log

⎛
⎝1 +

∑

sr∈S+
r

e−f+
r

⎞
⎠+

1

|Pr|
∑

pr∈Pr

log

⎛
⎝1 +

∑

sr∈S−
r

ef
−
r

⎞
⎠ , (4)

where we assign a proxy pr to each writer and link it with

all masked results Sr. The similarity between positive pairs

is f+
r = α(g(sr, pr)− δ) for sr ∈ S+

r , and that of negative

pairs is f−
r = α(g(sr, pr) + δ) for sr ∈ S−

r .

4.3. Multi-Scale Content Learning
Existing methods [7, 9, 12, 23, 44] rely on content recog-

nition losses to enhance the content readability of gener-

ated handwriting images. However, these losses, applied

at the text-line level, prioritize global correctness but of-

ten fail to ensure character-level accuracy. For instance, in

datasets like IAM [36], where a single text line averages 42

characters—approximately six times the length of a typical

word, maintaining content integrity across the entire gener-

ated text becomes challenging. To address this problem, we

introduce a multi-scale content learning strategy that pro-

vides finer-grained content supervision at both global (line)

and local (word) levels for content adversarial training. As

shown in Figure 5, the line content discriminator Dline eval-

uates the overall character order with a line discrimination

loss Lline, while the word content discriminator Dword en-

sures character-level accuracy through a word discrimina-

tion loss Lword. The overall multi-scale content loss is then

formulated as:

Lcontent = Lline + Lword. (5)

Line content discriminator. As shown in Figure 5(a),

given the generated image x0 after diffusion and the content

guidance Iline without style information, the line discrim-

inator Dline aims to determine whether the overall charac-

ter order in x0 matches that in Iline. Firstly, we set the

wider of the Iline and x0 as the benchmark, padding the

narrower one with white background pixels for width align-

ment. We then concatenate x0 and Iline along the chan-

nel dimension, and then slice the concatenated result into n
non-overlapping segments {ci}ni=1 from left to right. After-

wards, a 3D CNN [55] based discriminator Dline processes

{ci}ni=1 to incorporate global context information of char-

acters, and determines whether this output is real or fake,

providing feedback for the overall character order. The line

discriminator loss Lline is formulated as:

Lline = log(Dline(Iline, xreal)) + log(1−Dline(Iline, x0)). (6)

Word content discriminator. Compared to the line dis-

criminator Dline, the word discriminator Dword is designed

to ensure that the text structure is correctly generated at the

word level. However, accurately locating word positions

within a whole text-line x0 is non-trivial. Motivated by

ASTER [52], we utilize an attention module with a CNN-

LSTM architecture to obtain word positions.

As shown in Figure 5(b), given the generated image x0

after diffusion, a CNN encoder first extracts spatial features

Fmap ∈ R
h×w×c from x0, which is flattened into sequen-

tial features H ∈ R
l×c, where l = h × w. The LSTM de-

coder then takes x0 and a start-of-sequence (SOS) token as

input, sequentially outputting attention maps for character

positions until the end-of-sequence (EOS) token is reached.

The character-level attention maps are then concatenated

into word-level attention maps A = {at}Tt=1 (cf. Figure 12

in Appendix), where at ∈ R
h×w and T denotes the number

of words in the text-line. Based on the attention maps, we

extract attended words {xt
word}Tt=1, with xt

word = at · x0.

Lastly, each xword and its corresponding content guidance

Iword are fed into Dword for discrimination, which provides

word-level content feedback for the generator to refine the

local content readability. Specifically, the word discrimina-

tor loss Lword is formulated as:

Lword =

T∑
i=1

log(Dword(I
i
word, x

i
real)) +

T∑
i=1

log(1−Dword(I
i
word, x

i
word)),

(7)

where i represents the i-th word in a text line.



Datasets Method Shot HWD ↓ DCER ↓ DWER ↓ FID ↓ IS ↑ GS ↓

IAM

TS-GAN [9] one 2.11 44.20 87.13 16.76 1.76 2.87 ×10−2

CSA-GAN [23] few 2.25 42.27 84.14 13.52 1.74 1.62 ×10−2

VATr [44] few 1.87 28.80 71.77 12.51 1.69 1.45 ×10−2

DiffusionPen [40] few 1.72 54.75 84.70 10.24 1.83 6.42 ×10−3

One-DM [7] one 1.80 20.91 54.27 10.60 1.82 8.42 ×10−3

Ours one 1.41 8.59 28.60 8.69 1.85 2.35 ×10−3

CVL

CSA-GAN [23] few 1.72 41.64 72.02 8.71 1.48 6.71 ×10−2

VATr [44] few 1.50 38.49 66.33 9.04 1.44 1.43 ×10−1

DiffusionPen [40] few 1.32 55.94 88.36 11.90 1.59 5.08 ×10−2

One-DM [7] one 1.47 32.42 63.35 11.95 1.46 1.29 ×10−1

Ours one 1.06 20.92 36.38 7.57 1.70 2.96 ×10−2

Table 1. Comparisons with baselines on handwritten text-line generation on IAM and CVL. All methods are trained on the same training

set and evaluated using the same protocols. The “Shot” column indicates the number of text-line style references required for each method.

5. Experiments

5.1. Experimental Settings

Evaluation dataset. To evaluate our DiffBrush in generat-

ing handwritten text-line, we use the widely adopted hand-

writing datasets IAM [36] and CVL [26]. IAM contains

13,353 English text-line images belonging to 657 unique

writers. Following the protocol of CSA-GAN [23], we use

text-lines from 496 writers for training and the remaining

161 writers for testing. CVL dataset consists of handwrit-

ten text-lines from 310 writers in both English and Ger-

man. For our experiments, we use the English portion, con-

sisting of 11,007 text-lines, and follow the standard CVL

split, with 283 writers for training and 27 for testing. In

all experiments, we resize the images to a height of 64 pix-

els while preserving their aspect ratio, as done in previous

works[7, 9, 23]. To manage varying widths, images with

a width smaller than 1024 pixels are padded, whereas those

exceeding 1024 are resized to a fixed size of 64 × 1024. We

also evaluate DiffBrush on popular Chinese dataset CASIA-

HWDB (2.0–2.2) [32] (cf. Appendix E for more details.)

Evaluation metrics. 1) We use the newly proposed Hand-

writing Distance (HWD) [45], specifically designed for

handwriting style evaluation. HWD computes the Eu-

clidean distance between features extracted by a VGG16

network pre-trained on a large corpus of handwritten text

images. 2) For content evaluation, we follow latest stud-

ies [7, 40, 41] by using the generated training sets from

each method to train an OCR system [48] and report its

recognition performance on the real test set in terms of CER

and WER. We name these new evaluation metrics DCER and

DWER, with further discussions provided in Appendix C. 3)

We use Fréchet Inception Distance (FID) [15], Inception

Score (IS) [51], and Geometry Score (GS) [24] to measure

the visual quality of generated images. 4) We also conduct

user studies to quantify the subjective quality of the gener-

ated handwritten text-line images in Appendix D.

Implementation details. In all experiments, we use a ran-

domly selected text-line sample as the style reference. In

DiffBrush, both the style and content encoders are based

on a ResNet18, followed by 2 transformer encoder layers.

Line discriminator uses three 3D convolution layers, and

word discriminator has three 2D convolution layers. The

model is trained for 800 epochs on eight RTX 4090 GPUs

using the AdamW optimizer with a learning rate of 10−4.

We set masking ratio ρ to 0.5 after a grid search (cf. Ta-

ble 5 in Appendix). We randomly drop the condition c with

the probability 0.1 for classifier-free training [16]. During

inference, we adopt a classifier-free guidance scale of 0.2

and use DDIM [53] with 50 steps to accelerate the process.

More details are put in Appendix B.

Compared Methods. We compare DiffBrush with state-

of-the-art handwritten text-line generation methods, includ-

ing TS-GAN [9], CSA-GAN [23], and advanced word-level

handwritten text generation approaches like VATr [44], Dif-

fusionPen [40] and One-DM [7]. We provide implementa-

tion details of word-level methods in Appendix G.

5.2. Main Results
Styled handwritten text-line generation. We assess Diff-

Brush for generating handwritten text-line images with de-

sired style and specific content. To quantify style similarity,

following CSA-GAN [23], we generate text-line images for

each method using style information from test set and con-

tent input from a subset of WikiText-103 [37]. We then

calculate the HWD between the generated and real samples

for each writer, and finally average the results.

The quantitative results in Table 1 show that DiffBrush

outperforms all state-of-the-art methods on both IAM and

CVL datasets. Specifically, it improves HWD by 18.02%
(1.72 → 1.41) on IAM and 19.69% (1.32 → 1.06) on CVL

compared to the second-best method, highlighting its supe-

rior style imitation ability. Moreover, DiffBrush achieves

significantly lower DCER and DWER on both IAM and CVL

datasets, demonstrating its advantage in content readability.

In contrast, DiffusionPen [40] yields the highest DCER and

DWER due to ineffective content supervision.

We provide qualitative results to intuitively explain the

benefit of our DiffBrush in Figure 6. TS-GAN struggles

to accurately capture the style patterns of reference sam-



TS-GAN

Style 
samples

CSA-GAN

DiffusionPen

VATr

One-DM

Ours

Figure 6. Qualitative comparisons between our method and state-of-the-art approaches for handwritten text-line generation, conditioned

on out-of-vocabulary (OOV) textual content and unseen styles from the IAM test dataset. We use the same guiding text, “Success is not the

destination, it’s the journey, every step forward is a step toward growth.” for all methods, instructing them to generate the text in different

handwriting styles. The red circles highlight missing characters or structural errors. Better zoom in 200%.

Style sample HWD↓ ↓↓ ↓

Base+ + + 1.41 28.608.59

Base+ + 1.44 43.3115.28

Base+ +without masking 1.82 87.2556.02

Base+ +random masking 1.75 86.4255.41

Base+ 1.47 54.64 84.33

Base+ + 1.42 43.9314.61

Figure 7. Ablation studies of the content-decoupled style module (ξstyle) and the multi-scale content discriminators (i.e., Dline and Dword)

based on IAM test set. εsingle denotes a single CNN-Transformer style encoder (ResNet18 followed by 3 transformer encoder layers). The

red boxes highlight failure instances of structure preservation, whereas the blue box points out an incorrect repetitive word.

ples, like ink color and stroke width. CSA-GAN produces

samples that lack style consistency, including inconsistent

character slant, ink color, and stroke width. VATr has diffi-

culty maintaining vertical alignment between words in the

synthesized text lines. DiffusionPen struggles to ensure the

content readability of generation results. One-DM occa-

sionally generates text lines with missing or incorrect char-

acters. Conversely, our DiffBrush excels at generating pre-

cise character details while maintaining overall consistency.

Style-agnostic text-line generation. We further evaluate

DiffBrush’s ability to generate realistic handwritten text-

line images, independent of style imitation. Following TS-

GAN [9], each method generates 25k random text-line im-

ages to calculate FID against all training samples, and 5k

random samples for GS calculation, compared with 5k sam-

ples from the test set. Besides, we generate the entire test

set using each method and evaluate the results using the IS.

As shown in Table 1, DiffBrush achieves the highest per-

formance across FID, IS, and GS metrics on both IAM and

CVL datasets, further demonstrating its ability to generate

superior-quality handwritten text-line images.

5.3. Analysis

In this section, we conduct ablation studies to analyze our

DiffBrush. We provide more analyses in Appendix, includ-

ing generalization evaluation on various style backgrounds,

failure case analysis, ablation results on masking ratio, en-

riching datasets to train recognizer, style interpolation re-

sults, style evaluation results in terms of WIER [12, 61],

discussions about fine-grained style learning.

Quantitative evaluation of style module and content dis-
criminators. We perform multiple ablation studies to ana-

lyze different components. Quantitative results in Figure 7

reveal that: (1) Compared to two variants—a basic style

encoder without masking, and with random masking (best

masking ratio 0.5)—our style module ξstyle significantly

improves HWD by 19.23% (1.82 → 1.47), and 16.00%
(1.75 → 1.47), respectively. This highlights the effective-

ness of ξstyle in style learning. (2) The combination of the

Dword and Dline leads to significant improvements in terms

of DCER and DWER without reducing HWD. This is achieved

by employing style-free conditional discriminators, which



Style module in DiffBrush HWD↓D ↓ ↓

Our style module 1.41 8.59 28.60

1.78 11.34 36.29Single style encoder

Hor. enhancing head only 1.58 10.66 33.64

Ver. enhancing head only 1.63 10.92 35.04

Figure 8. Effect of the horizontal and vertical enhancing heads

on IAM test set. Red lines highlight vertical alignment of words,

while blue boxes denote the word spacing. “Single style encoder”

is a basic CNN-Transformer encoder without masking.

Style sample HWD↓ DCER↓ DWER↓

Base+ߦୱ௧௬௟௘ 1.47 54.64 84.33

Base+ߦୱ௧௬௟௘ +ࣞ 1.41 8.59 28.60

Base+ߦୱ௧௬௟௘+CTC 1.67 16.53 50.48

Figure 9. Effect of discriminators D and CTC recognizer [14]

under their best trade-off factor. Red circles indicate handwritten

texts with simplified style (i.e., regular texts with standard strokes).

focus solely on forcing the generator to enhance content

readability, without impeding the learning of style.

Qualitative evaluation of style module and content dis-
criminators. We conduct visual ablation experiments to

further analyze each module in our DiffBrush. As shown

in Figure 7, we observe that the first two basic baselines

show clear drawbacks in both style imitation and content

readability. Adding our style module significantly improves

style reproduction, such as ink color and stroke width, but

content readability remains poor. Adding Dword alone im-

proves the character details. However, it struggles to main-

tain overall content readability, leading to issues like word

repetitions and shifts. Employing Dline solely enhances

overall content readability, but character detail issues still

remain. In contrast, the best generation results are achieved

when both line- and word-level discriminators are used.

Discussions about style learning. We conduct ablation

study on the style module to analyze the differences be-

tween two style-enhancing heads. As shown in Figure 8,

adding either the vertical or horizontal enhancing head im-

proves text-line style quality in terms of HWD. The ver-

tical head enhances the style imitation ability, particularly

in maintaining consistent vertical word alignment. Mean-

while, the horizontal head also improves the style learning,

like horizontal spacing patterns. These findings support our

motivation that content-masking strategies in different di-

rections help the effective style learning (cf. Figure 2). Fi-

nally, it is worth emphasizing that our style features contain

complete style information as they are extracted from the

entire style reference before any masking (cf. Figure 3).

Discussions on discriminators and CTC. The quantita-

tive results in Figure 9 show that incorporating CTC rec-

ognizer [14] significantly reduces DCER and DWER, while

also impairing the style evaluation (HWD). Visualization

FID↓Style sample HWD↓ DCER↓ DWER↓

8.69DiffBrush (Ours) 1.41 8.59 28.60

29.87VATr+assembling 2.46 36.58 80.94

25.24DiffusionPen+assembling 2.19 28.64 71.25

26.15One-DM+assembling 2.37 26.50 62.79

Figure 10. Comparisons between directly generated text-lines and

text-lines assembled by isolated words on IAM test set.

Method

Ours

One-DM

HWD↓

0.73

1.09

96.24

81.99

96.65

82.80

↓ D ↓↓ D ↓ FID↓

7.87

17.38

Figure 11. Quantitative and qualitative comparisons with One-

DM [7] on Chinese handwritten text-line generation. The blue

boxes highlight the character spacing, while the red circles em-

phasize the incorrect character structures.

results in Figure 9 intuitively explain the reasons for this

degradation. The CTC version tends to produce texts with

simplified styles that differ significantly from style samples.

Conversely, our discriminators enhance content readability

while preserving style mimicry performance. We provide

more experiment details and visual results in Appendix E.

Discussions on directly generated and assembled text-
lines. We conduct experiments to demonstrate the supe-

riority of directly generated text lines over those obtained

through concatenation. To this end, we apply the assem-

bling strategy in DiffusionPen [40] to enable the official

word-level generation baselines to generate text-line image

(cf. Appendix G). The results in Figure 10 demonstrate the

superiority of our method over those non-text line methods.

More experimental results are provided in Appendix H.

Applications to Chinese text-line generation. We assess

DiffBrush’s ability to generate Chinese scripts, a challeng-

ing task due to thousands of character categories and their

complex structures. Both quantitative and qualitative results

are provided on Figure 11. We observe our DiffBrush ef-

fectively handles Chinese handwritten text-lines in terms of

style imitation and content fidelity. More experimental de-

tails and visualizations are put in Appendix E.

6. Conclusion
In this paper, we introduce DiffBrush, a novel diffusion

model tailored for handwritten text-line generation. To the

best of our knowledge, this is among the first exploration

of diffusion models for this task. For better style learning

and content guidance, we propose a content-decoupled style

learning strategy that significantly enhances style imitation

and multi-scale content discriminators that supervise tex-

tual content at both the line and word levels while preserv-

ing style imitation performance. Promising results on three

widely-used handwritten datasets verify the effectiveness of

our DiffBrush. In the future, we plan to explore its potential

to support other generative tasks, such as font generation.
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Beyond Isolated Words: Diffusion Brush for Handwritten Text-Line Generation

Supplementary Material

We organize our supplementary material as follows.

• In Appendix A, we review the related work of diffusion

methods in general image generation.

• In Appendix B, we describe more implementation details.

• In Appendix C, we provide more discussions about con-

tent evaluation metrics, i.e, DCER and DWER.

• In Appendix D, we conduct user study experiments.

• In Appendix E, we put the experimental details and visual

results for Chinese handwritten text-line generation.

• In Appendix F, we provide more ablation experiments:

1) Comparing the content discriminators and CTC recog-

nizer. 2) More visual ablation results of the style mod-

ule and content discriminators, 3) More visual ablation

results of vertical enhancing and horizontal enhancing

heads, 4) More ablation results on discriminators archi-

tecture, and 5) The effect of masking ratio ρ.

• In Appendix G, we provide the implementation details of

word-level generation methods.

• In Appendix H, we provide more discussions about di-

rectly generated text-lines and assembled text-lines.

• In Appendix I, we provide more style evaluation results.

• In Appendix J, we explore the generalization of our Diff-

Brush to style images with various backgrounds.

• In Appendix K, we explore the downstream application of

enriching datasets for training more robust recognizers.

• In Appendix L, we discuss the fine-grained style learning.

• In Appendix M, we provide failure case analysis.

• In Appendix N, we present results from visual style inter-

polation experiments.

• In Appendix O, we present extensive visual results for

English and Chinese handwritten text-line generation.

A. More related work

Image diffusion Diffusion models such as Denoising Dif-

fusion Probabilistic Model (DDPM) [17] and Latent Diffu-

sion Model (LDM) [49] have shown great success in im-

age generation. For example, guided diffusion [10] and

classifier-free diffusion [16] condition the image synthe-

sis on class labels. Some text-to-image diffusion methods

like Stable-diffusion [49] and DALL-E3 [2] further employ

CLIP [46] to convert text descriptions into comprehensive

representations, thereby producing impressive results. Very

recently, some methods [58, 60] combine adversarial learn-

ing with diffusion using a discriminator to enhance gener-

ation quality. Unlike these GAN-diffusion approaches that

simply distinguish between real and generated images, our

two-level content discriminators are specifically designed to

provide content supervision at both the line and word levels.

B. More implementation details

Content encoder. Following VATr [44] and One-DM [7],

we render the text string A into Unifont images. The

strength of Unifont is its ability to represent all Uni-

code characters, allowing our method to accept any user-

provided string input. We then input the rendered images

into a CNN-Transformer content encoder to obtain an in-

formative content feature Q = {qi}Li=1 ∈ R
L×c.

Blender. Motivated by One-DM [7], content Q and style

features Sver, Shor are fused in the blender with 6 trans-

former decoder layers [18, 27, 29–31, 43, 56, 65] across

two stages. Initially, Sver serves as the key/value vectors,

while Q serves as the query vector that attends to Sver in

the first three layers to produce a fused vector. Then, this

fused vector becomes a new query vector, attending to Shor

in the last three layers as the guiding condition c ∈ R
L×c.

Multi-scale content discriminators. Before being fed into

the line content discriminator, the generated image x0 and

the content guidance image Iline are concatenated along

the channel dimension, and the resulting tensor is divided

into n segments, as described in Section 4.3. We set n=32
to ensure that each segment approximately covers a single

character. Specifically, as mentioned in Section 5, the to-

tal width of a text-line image is adjusted to 1024 pixels af-

ter data pre-processing. Dividing it into non-overlapping

32 parts yields segments with a width of 32 pixels, closely

matching the average character width in the dataset.

Assume the divided segments C ∈ R
n×c×h×w. A 3D

CNN [55] employs sliding window operations across both

the spatial dimensions (i.e., h and w) and the temporal di-

mension (i.e., n) to capture the global contextual informa-

tion of characters. This representation is then passed to

the line content discriminator, which evaluates whether the

overall character order in the generated image x0 matches

that of the content guidance image Iline.

We pre-train the attention module of the word content

discriminator on the training set, enabling it to accurately

attend to word positions(cf. Figure 12). Its parameters are

then frozen during the training of the entire DiffBrush.

Masking strategy. Our masking strategy involves ran-

domly masking rows or columns in feature maps (cf. Fig-

ure 4). The number of masked elements is determined

by the sampling rate ρ, which consequently controls both

the quantity and size of the masked features. Given Ŝ ∈
R

h×w×c, column-wise masking selects (w × ρ) tensors of

size h × 1 × c, while row-wise masking selects (h × ρ)
tensors of size 1× w × c.
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Figure 12. Visualization of attention maps for each word in a hand-

written text-line image.

Conditional diffusion generator. To conserve GPU mem-

ory and accelerate the training time, following Word-

stylist [39] and One-DM [7], we streamline the U-Net by

reducing the number of ResNet [59] blocks and attention

heads and take the diffusion process into the latent space.

Specifically, we adopt a powerful, pre-trained Variational

Autoencoder (VAE) of Stable Diffusion (1.5) to convert

the image into latent space. During the training phase, we

freeze the parameters of VAE and set T = 1000 steps, and

forward process variances are set to constants increasing

linearly from β1 = 10−4 to βT = 0.02.

More training details. The proposed conditional diffusion

generator G and the multi-scale discriminators D engage in

an adversarial learning process: G seeks to synthesize real-

istic images that D cannot distinguish from real ones based

on content, while D assess the content at both the line and

word scales. The readability of the generated images im-

proves through two adversarial losses, Lline and Lword,

which further enhances generation quality in terms of con-

tent accuracy. In summary, the overall training objectives

for the conditional diffusion generator, and the multi-scale

discriminators are defined as:

LG = Ldiff + Lstyle + λLcontent, (8)

LD = −Lcontent, (9)

Our DiffBrush is trained with 800 epochs, as described

in Section 5. During the first 750 epochs, we optimize the

model using only Lver, Lhor and Ldiff . In the final 50

epochs, we retain these loss functions and further introduce

Dline and Dword to enhance the readability of the generated

images x0. Specifically, we use the conditional diffusion

generator to perform 5 denoising steps, generating a hand-

written image x0 with coarse content structure. We then

input x0 to the multi-scale content discriminators to obtain

content supervision at both line and word levels. The total

training time for our DiffuBrush is approximately 4 days.

C. More discussions about DCER and DWER

To better evaluate the content quality of generated results,

we use DCER and DWER as content evaluation metrics, fol-

lowing the recent works [7, 40, 41]. It is worth emphasizing

that DCER is also referred to as HTGHTR in [41]. The differ-

ence lies in the fact that HTGHTR measures character error

rate (CER) at the word level, whereas DCER measures it at

the text-line level.

More specifically, the implementation details of DCER

and DWER are as follows: 1) Each method is employed to

generate a complete training set, which is then used to train

an OCR system [48]. The system is built on a CNN-LSTM

architecture with a CTC loss [14, 21, 68]. 2) The character

error rate (CER) and word error rate (WER) are evaluated

on the real test set, aiming to achieve recognition perfor-

mance as close as possible to that obtained with a real train-

ing set.

As noted in [40, 41], the intuition behind this experiment

is that a handwriting generation method achieving or ex-

ceeding the performance of the real IAM dataset demon-

strates two crucial abilities: 1) The generated handwrit-

ten text images have accurate content. 2) The generated

samples exhibit diverse styles. Although the first criterion

is crucial, focusing only on it while overlooking the sec-

ond criterion can lead to biased evaluations. For instance,

if a generation method favors producing easily recogniz-

able handwritten texts with simplified styles (cf. red circles

in Figure 14), it might achieve high content accuracy. How-

ever, such low-diversity results are not satisfactory to us.

To address this, we use DCER and DWER to provide a more

comprehensive evaluation of the content quality in the gen-

erated samples, since DCER and DWER simultaneously take

the aforementioned two factors into account.

D. User studies

User preference study. We invite human participants with

postgraduate education backgrounds to evaluate the visual

quality of synthesized handwritten text images, focusing on

style imitation. The generated samples are from our method

and other state-of-the-art approaches. In each round, we

randomly select a writer from the IAM dataset and use their

handwritten text-line sample as style guidance, along with

identical text as content guidance, to direct all methods in

generating candidate samples. Participants are presented

with one text-line from the exemplar writer as a style refer-

ence and multiple candidates generated by different meth-

ods. They are asked to select the candidate that best matches

the reference in style. This process is repeated 30 times,

yielding 900 valid responses from 30 volunteers. As shown

in Figure 13, our method receives the most user preferences,

demonstrating its superior quality in style imitation.

User plausibility study. We conduct a user plausibility



Figure 13. User preference study with a comparison to state-of-

the-art methods on handwritten text-line generation.

Actual
Predicted Classification

Accuracy
Real Fake

Real 27.22 22.78
49.11

Fake 28.11 21.89

Table 2. Confusion matrix(%) from the user plausibility study.

The classification accuracy of 49.11% suggests that users struggle

to differentiate between handwritten text-line images generated by

our DiffBrush and real ones.

study to assess whether the text-line images generated by

DiffBrush are indistinguishable from real handwriting sam-

ples. In this study, participants are first shown 30 examples

of authentic handwritten text-line samples. They are then

asked to classify each image they see as either real or syn-

thetic, with the images being randomly selected from both

genuine samples and those generated by our method. In to-

tal, 30 participants provide 900 valid responses. The results,

shown as a confusion matrix in Table 2, report a classifica-

tion accuracy close to 50%, suggesting the task becomes

equivalent to random guessing. This indicates that text-line

images generated by our method are nearly indistinguish-

able from real samples.

E. Chinese handwritten text-line generation

In this section, we evaluate DiffBrush’s capability to gener-

ate scripts with thousands of character categories and com-

plex character structures, such as Chinese. For this purpose,

we perform experiments on the widely used Chinese hand-

written text-line dataset CASIA-HWDB (2.0–2.2) [32].

Dataset. CASIA-HWDB (2.0-2.2) consists of 52,230 Chi-

nese text-lines belonging to 1,019 different writers. Fol-

lowing the standard split of CASIA-HWDB (2.0–2.2), we

use text-lines from 816 writers for training and remaining

DiffBrush λ HWD ↓ DCER ↓ DWER ↓

w/ CTC [14]

1 2.01 19.62 52.64

0.1 1.67 16.53 50.48
0.01 1.69 17.12 51.34

0.001 1.68 17.29 50.72

w/ Discriminators

0.1 1.43 9.87 31.96

0.05 1.41 8.59 28.60
0.01 1.45 10.40 32.54

Table 3. Quantitative ablation results for the CTC recognizer and

content discriminator variants of our DiffBrush on IAM test set. λ
denotes the trade-off factor (cf. Eq. (1) in Section 4.1).

203 writers for testing. As mentioned in Appendix B, since

Unifont [7, 44] can encode all Unicode characters, we still

employ it to convert Chinese strings into textual content im-

ages. Similarly, in our experiments, all images are adjusted

to 64 × 1024 pixels.

Evaluation Metrics. Similarly, we use HWD and FID [13,

15] to evaluate style imitation and visual quality of gener-

ated handwritten images, respectively. We still use the OCR

system [48] to measure the content quality of generated re-

sults. Unlike English handwriting generation, we evaluate

the OCR system’s recognition performance on a real test

set using two widely adopted metrics in Chinese text-line

recognition [5, 54, 57]: Accuracy Rate (AR) and Correct-

ness Rate (CR). Similarly, we name them DAR and DCR.

Qualitative comparison. We provide qualitative results

in Figure 26 and Figure 27. To ensure fair comparisons,

both DiffBrush and One-DM [7] are conditioned on the

same text contents and style samples. We observe that the

handwritten text lines generated by our DiffBrush (rows of

“Ours”) exhibit styles most similar to the reference samples,

particularly in terms of character spacing and ink color,

while preserving accurate character structures.

F. More ablation results
F.1. More ablation on discriminators and CTC
To further evaluate the impact of the proposed content dis-

criminators, we replace the multi-scale content discrimi-

nator in DiffBrush with the standard CTC recognizer [14]

adopted in One-DM [7] and conduct experiments to com-

pare them. The quantitative results in Table 3 show that

our discriminator version performs better. In Figure 14, we

further visualize their best λ results on IAM test set. We ob-

serve that CTC tends to simplify handwriting styles, while

the discriminator version better preserves reference styles.

F.2. More ablation results of ξstyle and D
In Figure 19, we provide more qualitative results of the

style module ξstyle and content discriminators (i.e., Dline

and Dword) on IAM dataset. From these results, we can

observe that εsingle versions exhibit notable flaws in both
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muttered together.’ Do you say that you poor

Style sample

Text Content obstacle overcome is a testament to your resilience,

Base+ߦୱ௧௬௟௘
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Text Content

Figure 14. Qualitative comparisons between the discriminators

D and the CTC recognizer [14]. Red circles indicate handwritten

texts with simplified style (i.e., regular texts with standard strokes).

Discriminators HWD ↓ DCER ↓ DWER ↓
2D Dline + 2D Dword 1.44 13.18 39.64

3D Dline + 3D Dword 1.43 9.58 30.27

Ours (3D Dline + 2D Dword) 1.41 8.59 28.60

Table 4. Architecture ablation results on content discriminators.

content accuracy and style imitation, including inconsisten-

cies in stroke color, thickness, and word spacing compared

to the style samples. Incorporating ξstyle significantly im-

proves style-related flaws; however, the readability of the

generated text remains unsatisfactory. The introduction of

Dline ensures that the overall character order in the gen-

erated text closely matches the content reference, greatly

improving content accuracy. Nevertheless, certain charac-

ter details remain imperfect. After adding Dword, incorrect

character structures are effectively corrected, thus further

enhancing the readability of the generated text-line.

F.3. Architecture ablation on discriminators
Our line content discriminator assesses global character or-

der, while the word discriminator verifies local text accu-

racy. To this end: 1) A 3D CNN processes segmented

character fragments to learn global character context. 2)

A 2D CNN focuses on the content information of the at-

tended words. In Table 4, an ablation study on IAM dataset

show that: 1) Replacing Dline with a 2D CNN significantly

increases DCER and DWER, highlighting the limitations of

using 2D CNNs for full text lines. 2) Switching Dword to

a 3D CNN yields no significant change, as a 2D CNN is

sufficient for attended words with fewer characters.

F.4. More ablation results on style learning
More visual ablation results are provided in Figure 20 to

analyze the effect of vertical enhancing and horizontal en-

hancing heads. The findings indicate that incorporating the

Masking ratio HWD ↓ DCER ↓ DWER ↓
0 1.72 56.52 87.15

0.25 1.64 56.48 86.99

0.50 1.47 54.64 84.33
0.75 1.58 55.29 88.34

Table 5. Effect of the masking ratio ρ. The results are derived from

our DiffBrush without using multi-scale content discriminators.

vertical enhancing head enhances the model’s style imita-

tion capabilities, notably in maintaining vertical alignment

between words. Similarly, adding the horizontal enhancing

head also improves the learning of style patterns, especially

in preserving horizontal word spacing. The integration of

both heads is crucial for our DiffBrush to produce high-

quality results that faithfully replicate the writing styles of

the reference samples.

F.5. Analysing the effect of masking ratio
We analyze ρ by removing content discriminators from

DiffBrush. As shown in Table 5, ρ = 0.5 yields the best

performance on IAM test set.

G. Comparisons with non-text line methods
As shown in Figure 1, directly assembling isolated words
from official word-level generation models leads to unnat-

ural and low-quality text-line results. We thus retrain these

non-text line methods (i.e., VATr [44], DiffusionPen [40]

and One-DM [7]) on text-line dataset to enable them to di-

rectly generate text lines for fair comparisons. It is worth

emphasizing that the official text-line generation scheme in

DiffusionPen [40] also employs an assembly-based strat-
egy. This involves resizing each generated word image to

ensure consistent character width, followed by a concatena-

tion operation with a fixed space.

H. Discussion on generated and assembled line
We further conduct more experiments on IAM dataset to

demonstrate the superiority of directly generated text lines.

We utilize our DiffBrush to directly generate handwritten

text-line images. For the assembled lines, we employ One-

DM [7] to produce isolated words, which are then concate-

nated into text lines using statistical methods. More specif-

ically, given a text-line style reference, we first employ

the Otsu algorithm [42] to compute a binary mask of the

text-line image, effectively separating words from the back-

ground. We then calculate the average spacing m between

words and determine whether the centroids of the words are

aligned along a horizontal or skewed line. With this sta-

tistical information, we concatenate the synthesized words

from One-DM, ensuring that the spacing between words is



Method HWD ↓ DCER ↓ DWER ↓ FID↓
One-DM + post-processing 2.17 24.81 62.08 23.92

DiffBursh (Ours) 1.41 8.59 28.60 8.69

Table 6. Quantitative comparisons between directly generated and

assembled text-lines on the IAM test set.

Style sample

DiffBrush(Ours)

One-DM+post-processing

Text Content a pose of police arrived

Style sample

Text Content else in sight to supplant

DiffBrush(Ours)

One-DM+post-processing

DiffBrush(Ours)

One-DM+post-processing

Style sample
Text Content as president of a union

Figure 15. Qualitative comparisons between directly generated

and assembled text-lines on the IAM test set.

m, and that the centroids of the words maintain the consis-

tent vertical alignment patterns as the text-line reference.

Quantitative results in Table 6 indicate that the text-lines

generated by our DiffBrush significantly outperform assem-

bled text-lines in terms of style evaluation (HWD), con-

tent evaluation (DCER and DWER), visual quality evaluation

(FID). These results demonstrate the advantages of direct

generation. From qualitative results in Figure 15, we can

observe that our directly generated text-lines exhibit more

consistent stroke colors, uniform character sizes, and ver-

tical word alignment patterns that more closely match the

style samples. These findings further underscore the supe-

riority of directly generating text lines.

I. Discussions on text-line style evaluation

We did not use the writer classifier from previous works [12,

61] because the models were designed for evaluating word-
level text style and the IAM split details for training the

classifier were missing, making fair and reproducible eval-

uation difficult. Instead, we adopt the open-source HWD

metric [45], which offers two advantages: (1) it ensures re-

producibility, and (2) it is pre-trained on large-scale hand-

written data and proven effective in text-line style evalua-

tion. Following the comment, we further include WIER [12,

61] for style evaluation. To this end, we randomly split the

standard IAM test set into 80% for classifier [12] training

Method TS-GAN CSA-GAN VATr DiffusionPen One-DM Ours

WIER (%) ↓ 96.03 82.14 76.96 73.85 70.92 59.77

Table 7. Style evaluation on the IAM test set.

Training Data CER ↓ WER ↓ Improve. (%) ↑
Real 5.78 21.76 -

CSA-GAN + Real 5.39 19.89 6.74

VATr + Real 5.08 19.31 12.11

One-DM + Real 4.99 18.51 13.67

DiffBrush (Ours) + Real 4.62 16.86 20.07

Table 8. Handwritten text-line recognition on different training

data. Improvement rate refers to CER performance gain achieved

by incorporating synthetic data into the training process compared

to using only the real training set.

and 20% for validation. The best classifier is then used to

evaluate the generation results. As shown in Table 7, our

DiffBrush continues to achieve the best style imitation per-

formance.

J. Generalization to more style backgrounds
To assess whether DiffBrush can effectively generalize to

different style backgrounds, we condition it on eight com-

plex and realistic backgrounds. The generated results are

shown in Figure 21 and Figure 22. We find that our Diff-

Brush still generates high-quality handwritten text-line im-

ages, further demonstrating the robustness of our DiffBrush.

K. Application for training robust recognizer
A key application of handwritten text-line generation mod-

els is to enrich the training dataset, facilitating the train-

ing of more robust recognizers. To this end, we combine

the IAM training set generated by various methods with the

real training set to create a new mixed dataset. We then

train an OCR system [48] using this mixed dataset and re-

port its performance on the real IAM test set. We present

the quantitative results in Table 8. These results clearly

show that the additional synthetic data contributes to im-

proving the recognizer’s performance. Among all methods,

our approach achieves the greatest performance improve-

ment, with an improvement rate of 20.07%.

L. Discussions on fine-grained style learning
Our method effectively models them for the following rea-

sons: 1) Our content-masking strategy preserves key fine-

grained features, including character-level details (cf. green

circles in Figure 2 (c)) and stroke-level patterns (cf. pur-

ple circles in Figure 2 (d)). 2) Following prior study [6],

our model uses character-level content as queries in a cross-

attention mechanism, enabling the style-content blender to

adaptively attend to fine-grained style cues within the refer-

ence images, as shown in Figure 17.
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Figure 16. Failure cases. The red circles highlight character struc-

ture errors. Better zoom in 200%.
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Figure 17. Visualization results of attention maps.
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Figure 18. Style interpolation results between different individual

handwriting styles on IAM dataset. The results are computed over

both style features Sver and Shor . Better zoom in 200%.

M. Analysis of failure cases

We find that DiffBrush occasionally generates structurally

incorrect characters when low-frequency characters from

the training set are used as content conditions. This includes

punctuation marks and Greek letters, as highlighted by the

red circles in Figure 16. A simple yet effective solution is

to employ a data oversampling strategy, increasing the fre-

quency of these characters during training.

N. Style interpolation

To further explore the latent space learned by our style mod-

ule, we conduct linear style interpolation experiments be-

tween different writers and display the generated handwrit-

ten text-line images in Figure 18. From these visual results,

we find that the generated text-line images smoothly transi-

tion from one style to another, in terms of character slant,

and stroke thickness, while strictly preserving their original

textual content. These results further confirm that our Diff-

Brush successfully generalizes to a meaningful style latent

space, rather than simply memorizing style patterns from

individual handwriting samples.

O. More generation results
Figure 23- Figure 27 present qualitative comparisons be-

tween our DiffBrush and previous state-of-the-art methods

for multilingual handwritten text-line generation, covering

both English and Chinese. The extensive visual results

demonstrate that our DiffuBrush excels in both style imi-

tation and structural preservation of generated multilingual

text-lines, highlighting its superior performance.
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Figure 19. More visual ablation results of the style module ξstyle and content discriminators (i.e., Dline and Dword). εsingle denotes a

single CNN-Transformer style encoder. The red boxes highlight failures of structure preservation.
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Figure 20. More visual ablation results of vertical enhancing and horizontal enhancing heads. The red lines indicate alignment of words

along the vertical axis, while blue boxes indicate word spacing.
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Figure 21. Generated handwritten text-line images conditioned on style samples with more complex and realistic backgrounds.
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Figure 22. Generated handwritten text-line images conditioned on style samples with more complex and realistic backgrounds.
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Figure 23. Comparisons with the state-of-the-art methods for English handwritten text-line generation. The red circles emphasize incorrect

content structure.
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Figure 24. Comparisons with state-of-the-art methods for English handwritten text-line generation. The red circles highlight incorrect

content structure.
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Figure 25. Comparisons with the state-of-the-art methods for English handwritten text-line generation. The red circles highlight incorrect

content structure.
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Figure 26. Comparisons with One-DM [7] on Chinese handwritten text-line generation. The blue boxes highlight the character spacing,

while the red circles emphasize the incorrect character structures.
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Figure 27. Comparisons with One-DM [7] on Chinese handwritten text-line generation. The blue boxes highlight the character spacing,

while the red circles emphasize the incorrect character structures.


