
8. More Quantitive Experiments
8.1. Comparison with Training-Based Methods
We further compare our method with more training-based
long audio generation models, including both diffusion mod-
els and language models. Although strictly speaking, the
absolute performance between models of varying sizes and
trained on different datasets seems incomparable, the rela-
tive performance degradation of each model with increasing
audio generation length can highlight the strengths and weak-
nesses of these methods for long-generation tasks.

Baselines The training-based baselines include: (1) Au-
dioGen [25] : An autoregressive model based on learned
discrete audio representations, inherently supporting ultra-
long audio generation. (2) Stable Diffusion Audio (SD-audio)
[14]: A diffusion model trained on a fixed 96-second win-
dow size with long audio, generating variable-length outputs
through end-cutting. Although the open-source version is
trained on a 47-second window, longer audio can still be
generated by customizing the initial noise size. (3) Make-An-
Audio2 (Make2) [13]: A diffusion model trained on variable-
length window sizes, with audio lengths ranging from 0 to
20 seconds. It supports a maximum length of 27 seconds,
constrained by the learnable positional encoding limit. For
SaFa, we implement it on Make-An-Audio2 for a clearer
comparison, following the settings described in Section 6.1.

Evaluation Settings We evaluate these four methods us-
ing a large-scale benchmark, AudioCaps [54], whose test set
includes 880 ground-truth samples collected from YouTube
videos. The target generation lengths are set to 32, 64, and
96 seconds. For SaFa, these outputs are formed by concate-
nating 4, 8, and 12 audio clips of 10 seconds, respectively.
As in Section 6.1, we use FD, FAD, KL, and mCLAP to
assess the generation quality and semantic alignment of the
generated audio. Following previous work [14]], we ap-
ply a 10-second sliding window operation with an 8-second
step on long audio samples and further evaluate them with
AudioCaps test set.

Results As shown in Table 5, Make2, the SOTA diffusion-
based audio generation model, demonstrates excellent per-
formance in 10-second audio generation. However, it shows
significant performance degradation when generating its
maximum-length output of 27 seconds, as most training
audio clips are under 20 seconds, and it lacks adaptation to
longer unseen lengths. In contrast, our SaFa (32s) method
maintains high performance in terms of KL and mCLAP,
with only minor degradation observed in FD and FAD com-
pared with the reference model Make2 (10s). Moreover,
SaFa consistently delivers strong performance for 32-, 64-,
and 96-second generation tasks with minimal degradation.
As for AudioGen, the SOTA LM audio generation model, its
architecture is inherently suited for generating longer audio

Method FD↓ FAD↓ KL↓ mCLAP↑
SD-audio (10s) 38.23 6.20 2.19 0.40
SD-audio (32s) 25.52 6.43 2.24 0.37
SD-audio (64s) 25.82 6.12 2.25 0.35
SD-audio (96s) 30.11 6.54 2.38 0.33
AudioGen (10s) 16.88 4.36 1.52 0.55
AudioGen (32s) 18.54 4.81 1.71 0.50
AudioGen (64s) 19.53 5.02 1.76 0.50
AudioGen (96s) 18.88 5.44 1.78 0.49
Make2 (10s) 14.37 1.12 1.28 0.57
Make2 (27s) 18.49 2.26 1.55 0.49
SaFa (32s) 15.21 1.45 1.25 0.57
SaFa (64s) 15.14 1.25 1.24 0.57
SaFa (96s) 15.36 1.33 1.25 0.57

Table 5. Quantitative Comparison with Training-Based Variable-
Length Audio Generation Models.

compared to diffusion models, its performance degrades sig-
nificantly as the generation length increases from 10 seconds
to 96 seconds, accompanied by substantial increases in mem-
ory and time costs. For SD-audio, improved FD performance
is observed when increasing the generation length from 10
to 32 seconds, likely due to the majority of its training data
being focused on longer durations. However, other metrics
consistently decline from 10 to 96 seconds, although the
degradation is less pronounced compared to AudioGen. This
highlights the robustness of diffusion models in generating
longer outputs within their maximum training window.

8.2. Joint Diffusion on Open-Source Checkpoint
In this subsection, we discuss several design flaws in ex-
isting open-source audio generation models that limit the
application of training-free methods, such as the joint dif-
fusion method. In this way, we show our audio generation
model as a potential contribution to advancing training-free
approaches in audio generation.

Adaptation on Existing T2A Models Specifically, Audi-
oLDM [32] and Tango [33] are trained with a fixed 10.24-
second window, padding shorter clips with zeros or trun-
cating longer clips. This flexible training pipeline causes
unexpected end silence in generated audios. Consequently,
implementing joint diffusion methods with these models of-
ten results in sudden silence in the overlap regions. Stable
Diffusion Audio [14] is also trained with a fixed 96-second
window and generates variable-length outputs by truncation,
making it similarly challenging to adapt for joint diffusion
methods. In comparison, Make-An-Audio2 follows a train-
ing pipeline similar to ours, using variable-length audio with-
out excessive padding. It organizes samples into different
buckets based on the length during training, randomly se-
lecting samples from the same bucket within each batch.
However, we observe some anomalous phenomena when
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Figure 6. The effect of the trajectory guidance rate rguide in Reference-Guided Swap on long spectrum and panorama generation.

Method FD↓ FAD↓ KL↓ mCLAP↑
Make2 18.01 2.01 1.49 0.50
MD 65.28 17.70 3.22 0.24
MAD 62.53 16.88 3.05 0.26
SaFa 15.36 1.32 1.27 0.57

Table 6. Quantitative comparisons of joint diffusion on 24-second
audio generation on Make-An-Audio2 [13].

Method FAD↓ FD↓ KL↓ mCLAP↑
SD-audio 6.44 25.26 2.18 0.37
MD 7.06 38.78 2.24 0.35
MAD 7.56 38.9 2.21 0.35
SaFa 4.19 24.40 1.96 0.41

Table 8. Quantitative comparisons of join diffusion on 24-second
audio generation on Stable Diffusion Audio [14].

applying Make2 with joint diffusion methods.

Comparison on 1D Convolution VAE Latent As shown
in Figure 7, when applying the joint diffusion method to
Make2, short abrupt transitions appear at the end of each
overlap region. Although SaFa significantly improves blend-
ing and generation quality compared to MD and MAD, these
abrupt transitions still persist. Through experiments, we
identify two main causes of this issue: (1) The VAE latent
map of Make-An-Audio2 is sensitive to the last token from
an adjacent subview. To mitigate this, we apply Self-loop
Swap with a five-token forward shift on the overlap regions.
(2) Its VAE model is less robust to linear operations on the
latent map compared to AudioLDM [32]. By performing
concatenation at t = 0 on the mel-spectrogram rather than
on the latent map, we effectively resolve this issue. As a
result, the improved method, SaFa+, performs well in Figure
7.

For quantitative comparison in Table 6, our method,
SaFa, significantly outperforms Make2 and other joint dif-
fusion methods across all metrics for 24-second generation
tasks.

MD MAD

SaFa+SaFa

The continuous bubbles gurgling in the water

Figure 7. The long-form spectrum generated by various joint diffu-
sion methods based on Make-An-Audio2.

Comparison on Waveform VAE Latent As shown in
Table 8, we also compare SaFa with other joint diffusion
methods on waveform VAE latents using the open-source
checkpoint from SD-Audio. We note that although we re-
strict the initial latent maps on 10 seconds to adapt joint
diffusion method (while the model was trained on fixed
96-second latent maps), this unoptimized setting does not
compromise fairness. As a result, SaFa also significantly
outperforms existing methods when evaluated on AudioCaps
with SD-audio.

8.3. Effect of Guidance Rate and Swap Interval
In Figure6, we further demonstrate the progressive tran-
sition from cross-view diversity to similarity by varying
rguide in both mel-spectrum and panorama generation us-
ing Reference-Guided Latent Swap. All other settings for
SaFa remain consistent with Section 6. As shown in Fig-
ure 6, using an appropriate trajectory guidance rate rguide,
20% to 40%, results in unified cross-view coherence while
preserving the diversity of local subviews. However, as the
guidance rate rguide increases beyond 60%, excessive rep-
etition and artifacts begin to appear. This occurs because
Reference-Guided Swap is a unidirectional operation, where
the denoising process of the reference view is independent
and unaffected by each subview. Consequently, it does not
adapt as seamlessly to subviews in the later stages as the
bidirectional Self-Loop Swap operation does. This is also
one of the reasons why we restrict Reference-Guided Swap
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Figure 8. The effect of the swap interval w (Eq. 10 ) of Self-Loop Latent Swap on spectrum generation. Better transition is achieved with
lower values of w, 1 or 2, which indicate a high swap frequency between two step-wise differential trajectories to enhance the high-frequency
component in the denoised mel-spectrum with better-blender transitions.
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Figure 9. User study results on audio generation.

to the early denoising stages.
To further explore the effects of the swap interval w (in

Eq. 10), we apply the Self-Loop Latent Swap with various w
values in spectrum generation, as shown in Figure 8. We ob-
serve that using a small swap interval (1 or 2), corresponding
to higher swap frequencies, produces smoother transitions.
Conversely, larger w values indicate larger swap units, re-
sulting in less seamless transitions between subviews. This
outcome aligns with the high-frequency variability of mel
tokens, leading us to default the Self-Loop Latent Swap to
frame-level operations with w = 1 for optimal performance.

8.4. Length Adaptation on Panorama Generation
In Table 9, We utilize SD 2.0 model to estimate performance
of SaFa on panorama images with resolutions of 512 × 1600,
512 × 3200, and 512 × 4800. As a result, SaFa maintains
stable and great performance across all evaluated metrics in
different length output.

9. User Study
For subjective evaluation, we randomly select samples from
the qualitative results of the top four methods in audio and
panorama generation for user studies. We use the same
notation as in Section 6.1. Specifically, SaFa is compared
with MD, MD*, and MAD for audio generation, while for
panorama generation, SaFa is compared with MD, MAD,
and SyncD. For each task, we randomly select 30 parallel
comparison groups (plus 2 additional pairs as a vigilance
group) from the four compared methods, evenly distributed
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Figure 10. User study results on panorama generation.

Method CLIP ↑ FID ↓ KID ↓ I-LPIPS ↓ I-StyleL ↓
SaFa (1600) 31.88 34.47 9.71 0.59 1.67
SaFa (3200) 31.84 34.71 9.91 0.61 1.74
SaFa (4800) 31.88 34.97 10.68 0.62 1.78

Table 9. Length adaptation of SaFa on panorama generation.

across six prompts. We recruit 39 participants with basic
machine learning knowledge but no prior familiarity with the
research presented in this paper. Each participant is required
to select the best sample from each of the 32 groups based
on two evaluation dimensions: generation quality and global
coherence. Semantic alignment is not considered, as most
samples align well with the prompts semantically and cannot
be easily distinguished in this regard. We ultimately collect
34 valid responses out of 39 participants. The results indi-
cate that SaFa consistently outperforms the baseline meth-
ods, achieving superior human preference scores across both
evaluation dimensions. Figure 9 highlight the significant
preference of human evaluators for SaFa in both quality and
coherence assessments of audio generation. This preference
stems from the swap operator’s enhanced adaptability to the
inherent characteristics of spectral data, which lacks the typ-
ical global structural features or contours present in images.
Meanwhile in Figure 10, with significantly faster inference
speeds and relying solely on fixed self-attention windows,
SaFa achieves comparable performance to SyncD and MAD
in the subjective evaluation of panorama generation.



10. Theoretical Analysis of Refer-Guided Swap for Cross-View Similarity-Diversity Balance

Reference-Guided Latent Swap improves cross-view consistency comparing with independent denoising process with reference
model directly. When SD-2.0 [41] is employed as the reference model Φ, we have the following proposition, which describes
the difference between two updated samples from arbitrary starting points x(1)

t2 ,x
(2)
t2 ∈ X :

Proposition Recall that the approximated reversed VP-SDE [5] used for conditionally generation in SD-2.0 is:

dx =

[
−1

2
β(t)x− β(t)sθ(x, t, y)

]
dt+

√
β(t)dw̃, (12)

where sθ(x, t, y) is a estimation for ∇x log pt(x|y), and w̃ is a Wiener process when time flows backwards from
t = 1 to t = 0. Denote that Φt2→t1(·|y) is the the sampling procedure from t2 to t1 condition on y in SD-2.0, and
σ2
t2→t1 = −

∫ t1
t2

β(u)du. Assume that ∀x ∈ X ,∀t ∈ [0, 1],∀y ∈ Y, ∥sθ(x, t, y)∥2 ≤ C, then ∀0 ≤ t1 < t2 ≤ 1,

∀x(1)
t2 ,x

(2)
t2 ∈ X , ∀y ∈ Y , ∀δ ∈ (0, 1), with probability at least (1− δ),
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exp

(
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2
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)
β(s) ds

∥∥∥∥
2

]2
+ 2σ2

t2→t1

(
d+ 2

√
d · (− log δ) + 2 · (− log δ)

)
.

(13)
where d is the number of dimensions of x(1)

t2 ,x
(2)
t2 ,x

(ref)
t2 .

Proof Using method of variation of parameters, solution for pre-mentioned SDE (1), Φt2→t1(xt2 |y), can be written as

Φt2→t1(xt2 |y) = exp(
1

2
σ2
t2→t1)

[
xt2 −

∫ t1

t2

exp(−1

2
σ2
t2→s)β(s)sθ(xs, s, y)ds

]
+

∫ t1

t2

√
β(t)dw̃, (14)

so for ∀x(1)
t2 ,x

(2)
t2 ∈ X , we have:
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From the assumption over sθ(x, t, y), we have:∥∥∥Φt2→t1
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(16)

Then we complete the proof for Proposition 10.

Corollary If we use introduce reference-guided latent swap operation before updating, by the definition of Swap(·), we have
∀0 ≤ t1 < t2 ≤ 1, ∀x(1)

t2 ,x
(2)
t2 ,x

(ref)
t2 ∈ X , ∀y ∈ Y , ∀δ ∈ (0, 1), with probability at least (1− δ),∥∥∥Φt2→t1
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Comparing with Eq.13, Eq.17 have a tighter upper bound, since Swap(x(ref)
t2 ,x

(1)
t2 ),Swap(x(ref)

t2 ,x
(2)
t2 ) shares the same

part Wswap ⊙ x
(ref)
t2 . This indicates that within a fixed time interval [t1, t2], performing a reference-guided swap operation on

the initial points before updating the sample points helps improve the similarity of the results.
According to Eq.13 and Eq.17, we can trade-off between similarity and diversity by tuning rguide. As rguide increases, the

swap operation is employed more frequently applied during the sampling process, leading to higher similarity across subviews.
Conversely, an increase in the L2 distance between the final subview images signifies enhanced sample diversity.

11. Further Qualitative Comparison
More qualitative results on the audio generation are in Fig. 11 to 19 and panorama generation are in Fig. 20 to 30.
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Figure 11. Qualitative comparison on soundscape generation. MD* represent an enhanced MD method with triangular windows.



Waves crashing on the beach with kids playing and seagull chirping
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Figure 12. Qualitative comparison on soundscape generation. MD* represent an enhanced MD method with triangular windows.



The audience's enthusiastic and passionate cheers and loud whistles in the stadium
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Figure 13. Qualitative comparison on soundscape generation. MD* represent an enhanced MD method with triangular windows.



Figure 14. Qualitative comparison on music generation. MD* represent an enhanced MD method with triangular windows.



Figure 15. Qualitative comparison on music generation. MD* represent an enhanced MD method with triangular windows.



Figure 16. Qualitative comparison on music generation. MD* represent an enhanced MD method with triangular windows.



The continuous gurgling sound of bubbles in the water
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Figure 17. Qualitative comparison on audio effect generation. MD* represent an enhanced MD method with triangular windows.
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Figure 18. Qualitative comparison on audio effect generation. MD* represent an enhanced MD method with triangular windows.



The bell's sound is crisp and pleasant, with a distinct rhythm
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Figure 19. Qualitative comparison on audio effect generation. MD* represent an enhanced MD method with triangular windows.



A photo of a city skyline at night
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Figure 20. Qualitative comparison on panorama image generation. MD* represent an enhanced MD method with triangular windows.



A photo of a forest with a misty fog
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Figure 21. Qualitative comparison on panorama image generation. MD* represent an enhanced MD method with triangular windows.



A photo of a mountain range at twilight
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Figure 22. Qualitative comparison on panorama image generation. MD* represent an enhanced MD method with triangular windows.



A photo of a snowy mountain peak with skiers
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Figure 23. Qualitative comparison on panorama image generation. MD* represent an enhanced MD method with triangular windows.



Cartoon panorama of spring summer beautiful nature
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Figure 24. Qualitative comparison on panorama image generation. MD* represent an enhanced MD method with triangular windows.



Natural landscape in anime style illustration
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Figure 25. Qualitative comparison on panorama image generation. MD* represent an enhanced MD method with triangular windows.



A photo of a grassland with animals

A serene sunrise over a misty lake, with soft colors reflecting on the water's surface
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Figure 26. Qualitative comparison on panorama image generation. MD* represent an enhanced MD method with triangular windows.



A photo of the dolomites

A photo of a rock concert

SaFa

MD

MAD

SyncD

SaFa

MD

MAD

SyncD

Figure 27. Qualitative comparison on panorama image generation. MD* represent an enhanced MD method with triangular windows.



Create a vibrant landscape inspired by 'Qingming Riverside Scene, with riverside life, famers, tourists, mountains, and traditional buildings

a photo of Chinese ink a vibrant landscape with farmers, tourists, mountains, traditional buildings and animal
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Figure 28. Qualitative comparison on panorama image generation. MD* represent an enhanced MD method with triangular windows.



Majestic red rock formations glowing in the sunset

Serene mountain valley carpeted in vibrant fall foliage
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Figure 29. Qualitative comparison on panorama image generation. MD* represent an enhanced MD method with triangular windows.



Silhouette wallpaper of a dreamy scene with shooting stars

Tranquil pond surrounded by autumn leaves

SaFa

MD

MAD

SyncD

SaFa

MD

MAD

SyncD

Figure 30. Qualitative comparison on panorama image generation. MD* represent an enhanced MD method with triangular windows.


