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Supplementary Material

A. Datasets

RefCOCO/RefCOCO+ [6] are collected using a two-
player game. RefCOCO has 142,209 annotated expressions
for 50,000 objects in 19,994 images, and RefCOCO+ con-
sists of 141,564 expressions for 49,856 objects in 19,992
images. These two datasets are split into training, valida-
tion, test A and test B sets, where test A contains images
of multiple people and test B contains images of multiple
instances of all other objects. Compared to RefCOCO, lo-
cation words are banned from the referring expressions in
RefCOCO+, which makes it more challenging.

RefCOCOg [4] is collected on Amazon Mechanical
Turk, where workers are asked to write natural language
referring expressions for objects. RefCOCOg consists of
85,474 referring expressions for 54,822 objects in 26,711
images. RefCOCOg has longer, more complex expressions
(8.4 words on average), while the expressions in RefCOCO
and RefCOCO+ are more succinct (3.5 words on average),
which makes RefCOCOg particularly challenging. We use
the UMD partition for RefCOCOg as it provides both vali-
dation and testing sets and there is no overlapping between
training and validation images.

gRefCOCO [3] comprises 278,232 expressions, includ-
ing 80,022 referring to multiple targets and 32,202 to empty
targets. It features 60,287 distinct instances across 19,994
images, which are divided into four subsets: training, val-
idation, testA, and testB, following the UNC partition of
RefCOCO.

Ref-ZOM [2] is derived from the COCO dataset, con-
sisting of 55,078 images and 74,942 annotated objects.
Of these, 43,749 images and 58,356 objects are used for
training, while 11,329 images and 16,586 objects are des-
ignated for testing. Annotations cover three scenarios:
one-to-zero, one-to-one, and one-to-many, corresponding
to empty-target, single-target, and multiple-target cases in
GRES, respectively.

R-RefCOCO [5] includes three variants: R-RefCOCO,
R-RefCOCO+, and R-RefCOCOg, all based on the clas-
sic RES benchmark, RefCOCO+/g. Only the validation set
adheres to the UNC partition principle, which is officially
recognized for evaluation. The dataset formulation incor-

porates negative sentences into the training set at a 1:1 ratio
with positive sentences.

B. Metrics
For GRES [3], we evaluate our model using gIoU, cIoU, and
N-acc metrics. For Ref-ZOM [2], we use oIoU and mIoU.
R-RefCOCO [5] utilizes mIoU, mRR, and rIoU metrics, as
defined in their respective benchmarks. The gIoU is cal-
culated by averaging the IoU across all instances for each
image, assigning a value of 1 to true positives in cases of
empty targets and 0 to false negatives. The cIoU metric
measures the ratio of intersection pixels to union pixels. In
Ref-ZOM, mIoU calculates the average IoU for images con-
taining referred objects, while oIoU corresponds to cIoU.
For R-RefCOCO, rIoU evaluates segmentation quality, in-
corporating negative sentences and assigning equal weight
to positive instances in the mIoU calculation. N-acc. in
gRefCOCO and Acc. in Ref-ZOM both represent the ratio
of correctly classified empty-target expressions to the to-
tal number of empty-target expressions. Additionally, mRR
in R-RefCOCO computes the recognition rate for empty-
target expressions, averaged across the dataset.

For GREC [1], we assess the percentage of samples with
an F1score of 1, using an IoU threshold of 0.5. A predicted
bounding box is considered a true positive (TP) if it over-
laps with a ground-truth box with an IoU of at least 0.5. If
multiple predictions match, only the one with the highest
IoU is counted as TP. Unmatched ground-truth boxes are
false negatives (FN), and unmatched predictions are false
positives (FP). The F1score for each sample is computed as
F1score = 2TP

2TP+FN+FP , with a score of 1 indicating a suc-
cessful prediction. For samples without targets, the F1score
is 1 if no predictions are made; otherwise, it is 0.

For REC, we evaluate accuracy based on the grounding
results. A predicted region is considered correct if the IoU
with the ground truth exceeds 0.5. For RES, we employ
mean Intersection over Union (mIoU) between predicted
masks and ground truth as the evaluation metric.

C. Additional Methods
C.1. Dataset Construction
To enrich the existing referential datasets with information
on foreground objects, we retrieve all corresponding fore-
ground targets from the original COCO dataset based on
the image id present in the datasets. Unlike traditional
general object detection tasks, our approach focuses solely
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Figure 1. Post-Process Flowchart. We combine the Refer Score
and Det Score to form the Proposal Referential Score, which is
used to filter the referred target via a threshold Thrp. NMS is
optional and not mandatory for DETR-based architectures.

on prominent foreground objects while minimizing the em-
phasis on weaker or occluded instances. During the dataset
construction, we filter out targets in the original COCO
dataset where is crowd=1. Additionally, we exclude ob-
jects with an absolute area smaller than 100 pixels and re-
tain only those with a relative area greater than 0.05 and
less than 0.8. This selection process ensures that the objects
in our dataset consist exclusively of significant foreground
targets. The primary motivation behind these choices is to
accelerate the model’s convergence while directing atten-
tion away from fine-grained small objects. Instead, we aim
to enhance the model’s focus on the understanding of refer-
ential relationships between text and images.

C.2. Post-process
Post-Processing Procedure. As illustrated in Fig. 1, the
post-processing consists of three components: Global Seg-
mentation, Refer Score, and Det Proposal. The Det Pro-
posal branch further decomposes into Det Score and Det
Box. For the segmentation branch, we directly apply a
threshold Thrm to binarize each pixel. In the target refer-
ential part, we combine the Refer Score with the Det Score,
as a valid referred target should possess both high detec-
tion confidence and high referential confidence. We filter
the combined score using a threshold Thrp. NMS is op-
tional in this process and not mandatory for DETR-based
architectures.

D. Additional Implementation Details
For GVG tasks (GREC, GRES), images are resized to
320× 320, and models are trained for 12 epochs. For CVG
tasks (REC, RES), images are resized to 384 × 384, with
training for 30 epochs. We use a unified batch size of 16
and adopt the Adam optimizer. All experiments are con-
ducted on four NVIDIA 4090 GPUs, without using Expo-
nential Moving Average (EMA). The initial learning rate
is 5 × 10−5 for the multi-modality encoder and 5 × 10−4

for other parameters. The learning rate decays by a factor
of 0.1 at the 7th and 11th epochs. All ablation studies are

conducted at a resolution of 224 × 224 and trained for 10
epochs.

E. Additional Ablation Studies
E.1. Impact of the Hyperparameter K in TAS
We analyze the effect of different K values on key metrics,
including N-acc., T-acc., F1score, and gIoU. The choice of
K directly influences the performance of the model by con-
trolling the number of top-scored segmentation pixels con-
sidered by Sexist. As shown in Table 1, the value of K
determines the extent to which segmentation results con-
tribute to the final target existence score. A higher K sup-
presses the existence confidence, leading to a reduction in
the overall refer score. This intuitively improves N-acc. but
decreases T-acc. A crucial aspect to discuss is the opti-
mal number of segmentation pixels to use for weighting the
existence score to maximize improvements in F1score and
gIoU. Experimental results indicate that when K = 250, the
framework achieves peak performance across these metrics.

E.2. Impact of the Other Hyperparameter
Table 1 analyzes the impact of varying individual loss
weights. First, increasing the weight of Ldet (ID 5) im-
proves F1score (69.6) but slightly reduces gIoU, suggesting
better detection confidence at the cost of segmentation qual-
ity. Second, tuning Lexist (ID 2 vs. ID 1) mainly affects N-
acc, with higher weights enhancing classification accuracy
but harming F1score. Lastly, adjusting Lref (ID 6, 7) influ-
ences all metrics simultaneously, reflecting its central role
in balancing detection, grounding, and segmentation. Over-
all, the default setting (ID 1) provides the best trade-off.

ID Ldet:Lexist:Lref F1score N-acc gIoU
1 0.1:0.2:1.0 69.2 71.0 69.9
2 0.1:0.5:1.0 68.4 71.2 69.5
3 0.1:0.0:1.0 67.9 67.8 68.2
4 0.05:0.2:1.0 68.3 71.1 70.4
5 0.2:0.2:1.0 69.6 71.0 68.0
6 0.1:0.2:0.5 69.0 70.3 68.8
7 0.1:0.2:2.0 69.1 70.7 69.8

Table 1. Ablation study on the loss weights in Eq. ??.

E.3. Impact of the Post-Process
In this section, we analyze two aspects: different scoring
strategies and varying post-processing thresholds. For scor-
ing strategies, we compare three methods: using the refer
branch score directly, multiplying the refer and detection
branch scores, and taking the average of these two scores.
As shown in Table 2, the direct use of the refer branch
score yields the best results, as this score more accurately
reflects the importance of the target. For post-processing,



Figure 2. Impact of the Hyperparameter K in TopK Average Scoring (TAS).

Figure 3. Impact of the lower limit on the relative area of the
filtered objects.

we evaluate the performance under different threshold val-
ues Thrp. As presented in Table 3, the model performs best
when Thrp = 0.9.

E.4. Impact of Foreground Object Filter

In the training process of the foreground detection branch,
we establish a relative area constraint to prevent the model
from overly focusing on small targets, which could weaken
the optimization effects of other branches. Specifically, we
set an upper limit of 0.8 for the relative area of foreground
targets and a minimum absolute area of 100. We focus on
examining the impact of the lower limit Rlow on model per-
formance. As shown in Fig. 3, setting Rlow too low in-
troduces numerous small foreground targets into the train-
ing set, leading the model to overemphasize these weaker
targets and detracting from the core referential task. Con-
versely, setting Rlow too high may result in the neglect of
some smaller referential targets during training. Experi-
mental validation indicates that when Rlow is set to 0.05,
the model achieves optimal performance across all evalua-
tion metrics.

F. Analysis

Method F1score N-acc. gIoU cIoU
Srefer 71.59 70.99 72.73 69.18
Srefer × Sdet 71.38 72.01 72.83 69.06
Avg(Srefer, Sdet) 71.87 68.55 71.80 68.78
Srefer + NMS 71.65 71.34 72.86 69.20

Table 2. Ablation study on post-processing details. The first three
experiments compare different scoring strategies for target refer-
encing: Srefer refers to using the score from the refer branch di-
rectly; Srefer×Sdet denotes the product of scores from the refer and
detection branches; and Avg takes the average of the two scores.
The final experiment applies Non-Maximum Suppression.

Thrp F1score N-acc. gIoU cIoU
0.5 65.14 68.02 66.86 63.91
0.6 65.87 69.19 68.16 65.30
0.7 67.44 69.47 69.10 65.77
0.8 67.98 70.44 69.59 66.22
0.9 68.81 70.39 69.85 66.24

Table 3. Effectiveness of Thrp in post-process.

F.1. Foreground Supervision Analysis
Fig. 4 provides a visual comparison between two regres-
sion strategies: direct referring and our proposal-driven re-
ferring approach. In the latter, the model first generate the
foreground target before subsequently discriminate the pro-
posal’s referentiality. For instance, using text (a) as a case
study, the direct referring method erroneously identifies a
non-referent target with high confidence. In contrast, our
DeRIS effectively diminishes the confidence assigned to
non-target instances, thereby reducing false positives. Ex-
perimental results indicate that the integration of foreground
supervision enhances the model’s ability to differentiate be-
tween foreground and referent ones, leading to a marked
reduction in false positives and a substantial improvement
in generalization performance.

F.2. Proposal Analysis
By examining the foreground outputs generated for the
same image under varying textual descriptions, we observe
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Figure 4. Illustration the effect of incorporating foreground supervision. w/o fg sup. denotes the setting where only the referred objects are
used as supervision targets, potentially overlooking useful foreground cues.

that the textual input exerts a substantial influence on the
generation of foreground targets. Specifically, the model
prioritizes targets explicitly referenced in the text as fore-
ground objects. For example, in Fig. 5 (3), where the de-
scription ‘a guy in an orange tie’ is provided, the model ac-
curately identifies and emphasizes the corresponding target
as the foreground object. In contrast, in Fig. 5 (2), where no
such description is given, the same target is not classified
as foreground. Similarly, in Fig. 5 (4), the instruction ‘all
human beings’ prompts the model to designate all humans
as foreground targets, including subtle details such as the
smaller hand of a person on the left, which is overlooked
under alternative descriptions.

Further examples reinforce this trend. In Fig. 5 (5), the
phrase ‘all of the small pastries’ leads the model to detect
every pastry in the image as a foreground object, whereas
texts omitting ‘pastries’ exclude them from consideration.
In Fig. 5 (7), the model focuses exclusively on objects on
the ‘left’ side, as dictated by the text. In cases such as Fig. 5
(8) and (9), where inclusive terms like ‘all’ or ‘everyone’ are
used, the model identifies all visible targets as foreground
objects. Conversely, as illustrated in Fig. 5 (10), when the
text description is misaligned with the image content, the
model suppresses foreground generation entirely.

These findings underscore the pivotal role of multimodal
understanding approaches, such as BEiT-3, in driving these
behaviors. In such frameworks, the interaction between im-
age and text features initiates at the encoding stage, en-
abling the model to concentrate attention on objects that
align with the textual description when a specific reference
is provided. This early-stage interplay allows textual in-
formation to directly modulate the representation of image

features, amplifying responses in regions pertinent to the
description while attenuating those in unrelated areas. Con-
sequently, this mechanism facilitates precise and contextu-
ally targeted foreground generation.

G. Additional Visualization
G.1. Query Visualization
In Fig. 6, we visualize the results of 10 queries per sample,
including detection boxes, detection scores, and referential
scores. Additionally, we present the corresponding ground
truth, predicted proposals, predicted referential targets, and
referential masks.

G.2. Detail Visualization
We visualize the detection and segmentation results on
multiple datasets, including grefCOCO, RefCOCO/+/, R-
RefCOCO/+/, and Ref-ZOM. In Fig. 7, we present the
detection and segmentation performance of PropVG on
the standard RefCOCO dataset. Fig. 8 demonstrates the
model’s ability to extract foreground bounding boxes and
resolve referential expressions. Fig. 9 highlights PropVG’s
performance in detection and segmentation under challeng-
ing scenarios, showcasing its robustness. Finally, Fig. 10
illustrates the referential capability of PropVG on the Ref-
ZOM dataset, including both standard and multi-referent
cases. This also demonstrates the model’s enhanced detec-
tion robustness enabled by its foreground extraction capa-
bility.
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Figure 5. Illustration of foreground object prediction results under different texts.



Sentence：guy with mustache far left
Image GT Refer Box Refer MaskProposals

Sentence: the little girl wearing pink dress sitting in the right side and the pink laptop on the table in the front

Sentence: all human beings

Q
ue

ry
D

et
ec

ti
on

 R
es

ul
ts

Image GT Refer Box Refer MaskProposals

Image GT Refer Box Refer MaskProposals

Q
ue

ry
D

et
ec

ti
on

 R
es

ul
ts

Q
ue

ry
D

et
ec

ti
on

 R
es

ul
ts

Figure 6. Visualization of object queries with corresponding detection boxes, detection scores, and referential scores. Red boxes indicate
correctly referred objects, while blue boxes represent objects with low referential confidence.
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Figure 7. Visualization of RefCOCO/+/g dataset.



dude in black 
shirt behind

dog

catcher

red shirt and 
overalls man 

and child

2nd from left 
bottle dark 

label

Image Refer Box (Pred) Refer Mask (Pred)GT Proposals (Pred)

16

2 Fat guys

52nd bike

people
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Figure 9. Visualization of R-RefCOCO/+/g dataset.
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