A. Appendix

A.l. Overview

This supplementary material consists of:

* Analysis on decoupled anomaly alignment loss and mul-
tiple tokens (Sec. A.2).

* More implementation details (Sec. A.3).

* More details of downstream supervised segmentation
model implementation and usage (Sec. A.4).

* More ablation studies (Sec. A.5), including ablation stud-
ies on the Unbalanced Abnormal Text Prompt design, the
Separation and Sharing Fine-tuning loss, the minimum
size requirement for training images, the training strategy
of Sea$, the cross-attention maps for Decoupled Anomaly
Alignment, the features for Coarse Feature Extraction, the
features of VAE for Refined Mask Prediction, the normal
image supervision for Refined Mask Prediction, the Mask
Refinement Module, and the threshold for mask binariza-
tion.

* More qualitative and quantitative results of anomaly im-
age generation (Sec. A.6).

* Qualitative comparison results of supervised segmenta-
tion models trained on image-mask pairs generated by
different anomaly generation methods (Sec. A.7).

¢ Qualitative comparison results of different supervised
segmentation models trained on image-mask pairs gen-
erated by SeaS (Sec. A.8).

* Comparison with the Textual Inversion (Sec. A.9).

* More experiments on lighting conditions (Sec. A.10).

* More results on generation of small defects (Sec. A.11).

* More analysis on generation of unseen anomaly types
(Sec. A.12).

* More experiments on comparison with DRAEM (Sec.
A.13))

A.2. Analysis on decoupled Anomaly alignment loss
and multiple tokens

Here we give a more detailed analysis of the learning pro-
cess of the DA loss. According to Eq. 3, intuitively, the
DA loss may pull the anomaly tokens similar to each other.
However, the U-Net in Stable Diffusion uses multi-head at-
tention, which ensures that different anomaly tokens cover
different attributes of the anomalies. In Eq. 3, the cross-
attention map is the product of the feature map of U-Net and
the anomaly tokens. In the implementation of multi-head at-
tention, both the learnable embedding of the anomaly token
and the U-Net feature are decomposed into several groups
along the channel dimension. E.g., the conditioning vector
e, € R which is corresponding to anomaly token, is
divided into {e,; € R T li € [1,¢]}, and the image fea-
ture v € R™"*C2 ig divided into {v; € Rlx%ﬁ €[1,4]},
where ¢ is the number of heads in the multi-head attention.
Then the corresponding groups are multiplied, and the out-

puts of all the heads are averaged. The attention map A of
e, 1is calculated by:
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Therefore, in the defect region, the DA loss only ensures
the average of each head tends to 1, but does not require the
anomaly tokens to be the same as each other. In addition,
each e, is different from each other, and is combined by
€aq,i- The update direction of each ¢, ; is related to v; and
covers some features of the defect, it encompasses the at-
tributes of anomalies from various perspectives, thereby
providing diversified information.

We provide more examples in Fig. 8, where new
anomalies are generated that significantly differ from the
training samples in terms of color and shape. For ex-
ample, we showcase bottle_contamination, hazelnut_print,
and tile_gray_stroke with a novel shape, wood_color and
metal_nut_scratch with a novel color, and pill_crack with
a new shape, featuring multiple cracks where the train-
ing samples only exhibit a single crack. These examples
demonstrate the model’s ability to create unseen anomalies
based on recombining the decoupled attributes.
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Figure 8. Visualization of the generation results for unseen anoma-
lies on MVTec AD.

A.3. More implementation details

More training details. For the Unbalanced Abnormal Text
Prompt, we set the number N of multiple <df,,> to 4 and
the number N’ of <ob> to 1, these parameters are fixed
across all product classes. For a particular type of anomaly,
we use the Unbalanced Abnormal (UA) Text Prompt P,
with different sets of anomaly tokens as the condition to
generate the specified type of anomaly.

Pn=a <ob> with <dfygxn_3>,
<df4><n72>/ <d-f4><nfl>/ <df4><n>



where n represents the index of the anomaly types in the
product. To generate normal images, we use the embed-
ding the embedding e,, corresponding to the normal to-
kens of P, i.e., “a <ob>”, to guide the U-Net in predict-
ing noise. For example, for the normal token <ob>, given
the lookup 4 € R®*768 where b is the number of text
embeddings stored by the pre-trained text encoder, we use
a placeholder string "ob1" as the input. Firstly, "ob1"
is converted to a token ID s.p,; € R !in the tokenizer.
Secondly, s.,; € R !is converted to a one-hot vector
Sopp € RIx(O+D), Thirdly, one learnable new embedding
g € RYX768 corresponding to s,y is inserted to the lookup
U, resulting in Y € ROTVXT68  Here, g € R1X768 ig the
learnable embedding of <ob>. These embeddings and U-
Net are learnable during the fine-tuning process.

Training image generation model. For each product, we
perform 800 x G steps for fine-tuning, where G represents
the number of anomaly categories of the product. The batch
size of the training image generation model is set to 4. Dur-
ing each step of our fine-tuning process, we sample 2 im-
ages from the abnormal training set Xy, and 2 images from
the normal training set X,,. We utilize the AdamW [25]
optimizer with a learning rate of U-Net is 4 x 107%. The
learning rate of the text embedding is 4 x 107°.

Training Refined Mask Prediction branch. We design a
cascaded Refined Mask Prediction (RMP) branch, which is
grafted onto the U-Net trained according to SeaS. For each
product, we perform 800 x G steps for the RMP model,
where G represents the number of anomaly types for the
product. The batch size of training the RMP branch is set to
4. During each step of our fine-tuning process, we sample 2
images with their corresponding masks from the abnormal
training set Xg4¢, and 2 images from the normal training set
Xob. The masks used to suppress noise in normal images
have each pixel value set to 0. The learning rate of the RMP
model is 5 x 1074,

More inference details. For all experiments, we use t =
1500 to perform diffusion forward on normal images to get
the initial noise. We employ 7" = 25 steps for sampling.
Metrics. For anomaly image generation, we report 4 met-
rics: the Inception Score (IS) and Intra-cluster pairwise
LPIPS Distance (IC-LPIPS) to evaluate the anomaly im-
ages, KID [5] to assess the authenticity of normal images,
and IC-LPIPS calculated only on anomaly regions (short for
IC-LPIPS(a)), to evaluate diversity. The Inception Score
(IS), proposed in [2], serves as an independent metric to
evaluate the fidelity and diversity of generated images, by
measuring the mutual information between input samples
and their predicted classes. The IC-LPIPS [29] is used to
evaluate the diversity of generated images, which quanti-
fies the perceptual similarity between image patches in the
same cluster. For pixel-level anomaly segmentation and
image-level anomaly detection, we report 3 metrics: Area

Table 7. Comparison on resource requirement and time consump-
tion.

Training Inference
Methods Overall Time| Time (per image)
DFMGAN]11] 414 hours 48 ms
AnomalyDiffusion[17]| 249 hours 3830 ms
SeaS | 73hours |  720ms

Under Receiver Operator Characteristic curve (AUROC),
Average Precision (AP), and F -score at the optimal thresh-
old (F;-max). All of these metric are calculated using
the scikit-learn library. In addition, we calculate the In-
tersection over Union (IoU) to more accurately evaluate the
anomaly segmentation result.

More training details on anomaly detection methods. In
this section, we provide more training details of the com-
parative anomaly detection methods in Tab .2 and Tab .3 in
the main text. For DRAEM [41], GLASS [9], and HVQ-
Trans [26], we use the official checkpoints on the MVTec
AD dataset, while the others are self-trained due to the lack
of official checkpoints. For GLASS, the official foreground
masks for the VisA and MVTec 3D AD datasets are not
available, so this operation was not used. For PatchCore
[32], we use the image size of 256 without center cropping,
as some anomalies appear at the edges. For MambaAD
[15], we use the provided official checkpoints.

Resource requirement and time consumption. We con-
duct our training on a NVIDIA Tesla A100 40G GPU se-
quentially for each product category, which may use about
20G memory. The comparison on time consumption is
shown in Tab. 7. For the MVTec AD datasets, our train-
ing takes 73 hours, which is shorter than the 249 hours re-
quired by AnomalyDiffusion and the 414 hours required by
DFMGAN. In terms of inference time, SeaS costs 720 ms
per image, which is shorter than the 3830 ms per image re-
quired by the Diffusion-based method AnomalyDiffusion.
The inference time of the GAN-based method DFMGAN is
48ms per image.

A.4. More details of the supervised segmentation
models

As mentioned in the experiment part, we choose three su-
pervised segmentation models (BiSeNet V2 [40], UPer-
Net [38], LFD [45]) to verify the validity of the generated
image-mask pairs on the downstream supervised anomaly
segmentation as well as detection tasks. For BiSeNet V2
and UPerNet, we generally follow the implementation
provided by MMsegmentation. For LFD, we also use
the official implementation.

Specifically, for BiSeNet V2, we choose a backbone



structure of a detail branch of three stages with 64, 64 and
128 channels and a semantic branch of four stages with 16,
32, 64 and 128 channels respectively, with a decode head
and four auxiliary heads (corresponding to the number of
stages in the semantic branch). As for UPerNet, we choose
ResNet-50 as the backbone, with a decode head and an aux-
iliary head.

In training supervised segmentation models for
downstream tasks, we adopt a training strategy of train-
ing a unified supervised segmentation model for all
classes of products, rather than training separate super-
vised segmentation models for each class. Experimental
results are shown in Tab. 8, which indicate that the perfor-
mance of the unified supervised segmentation model sur-
passes that of multiple individual supervised segmentation
models.

Table 8. Ablation on the training strategy of supervised segmenta-
tion models.

Multiple Models Unified Model
AUROC AP Fi-max IoU |AUROC AP Fi-max IoU
BiSeNet V2| 96.00 67.68 65.87 54.11| 97.21 69.21 66.37 55.28

UPerNet | 96.77 73.88 70.49 60.37| 97.87 7442 70.70 61.24
LFD 93.02 7297 71.56 55.88| 98.09 77.15 72.52 56.47
Average | 95.26 71.51 69.31 56.79| 97.72 73.59 69.86 57.66

Models

A.5. More ablation studies

Ablation on the Unbalanced Abnormal Text Prompt de-
sign

In the design of the prompt for industrial anomaly image
generation, we conduct experiments to validate the effec-
tiveness of our Unbalanced Abnormal (UA) Text Prompt
for each anomaly type of each product. We set the num-
ber of learnable <df,,> to [N, and the number of learnable
<ob;>to N'. As shown in Tab. 9, by utilizing the UA Text
Prompt, i.e.,

P=a <ob> with <df;>,<dfy>, <dfs3>, <dfys>
we are able to provide high-fidelity and diverse images

for downstream supervised anomaly segmentation tasks, re-
sulting in the best performance in segmentation metrics.
Ablation on the Separation and Sharing Fine-tuning loss

In the design of the DA loss and NA loss for the Sepa-
ration and Sharing Fine-tuning, we conduct two sets of ex-
periments: (a) We remove the second term in the DA loss
(short for w/o ST in Tab. 10); (b) We replace the second
term in DA loss with another term in the NA loss (short for
with AT in Tab. 10), which aligns the background area with
the token <ob> according to the mask:

L
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where A, € R"™"*! is the cross-attention map corre-
sponding to the normal token <ob>. As shown in Tab. 10,
the experimental results demonstrate that, our adopted loss
design achieves the best performance in downstream super-
vised segmentation tasks.

Table 9. Ablation on the Unbalanced Abnormal Text Prompt de-
sign.

Prompt |AUROC AP Fj-max IoU

N'=1,N=1 96.48 63.69 62.50 52.02
N'=1,N=4(Ours)| 9721 69.21 66.37 55.28
N'=4,N =4 96.55 66.28 63.95 54.07

Table 10. Ablation on the Separation and Sharing Fine-tuning loss.

Loss ‘AUROC AP Fi-max IoU

w/o ST | 96.44 67.73 6523 54.99
with AT| 9642 63.99 62.43 53.36
Ours | 97.21 69.21 66.37 55.28

Ablation on the minimum size requirement for training
images

In the few-shot setting, for a fair comparison, we follow
the common setting in DFMGAN [11] and AnomalyDiffu-
sion [17], i.e., using one-third abnormal image-mask pairs
for each anomaly type in training. In this setting, the min-
imum number of abnormal training images is 2. Once we
adopt a 3-shot setting, we need to reorganize the test set.
To ensure that the test set is not reorganized for fair com-
parison, we take 1-shot and 2-shot settings for all anomaly
types during training, i.e., H = 1 and H = 2, where H is
the image number. The results are shown in Tab. 11 and
Fig. 9. Observably, the models trained by 1-shot and 2-shot
settings still generate anomaly images with decent diversity
and authenticity.

Table 11. Ablation on the minimum size requirement for training
images.

Size. | IS IC-L
H=1 1.790 0.311
H=2 1.794 0.314
H =1 x Hy|1.876 0.339

Ablation on the training strategy of SeaS

During each step of the fine-tuning process, we sample
the same number of images from the abnormal training set
Xqr and the normal training set X,,. To investigate the ef-
ficacy of this strategy, we conduct three distinct sets of ex-
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Figure 9. Visualization of the ablation study on the minimum size
requirement for training images. In the figure, the first row is for
generated images, and the second row is for generated masks.

periments: (a) prioritizing training with abnormal images
followed by normal images (short for Abnormal-Normal in
Tab. 12); (b) prioritizing training with abnormal images fol-
lowed by anomaly images (short for Normal-Abnormal in
Tab. 12); (c¢) training with a mix of both normal and abnor-
mal images in each batch (short for Abnormal&Normal i1
Tab. 12). As shown in Tab. 12, SeaS yields superior perfor
mance in anomaly image generation, characterized by botl
high fidelity and diversity in the generated images.

Table 12. Ablation on training strategy of SeaS.

Strategy | IS IC-L
Abnormal-Normal 1.53 0.28
Normal-Abnormal 1.70 0.32

Abnormal&Normal (Ours)|1.88 0.34

Ablation on the cross-attention maps for Decoupled
Anomaly Alignment

In Decoupled Anomaly Alignment (DA) loss, we lever-
age cross-attention maps from various layers of the U-Net
encoder. Specifically, we investigate the impact of inte-
grating different cross-attention maps, denoted as A! €
R64X64, A2 c R32X32, AS c RIGXIG and A4 c
R8*8, These correspond to the cross-attention maps of the
“down-17, “down-2", “down-3", and “down-4" lay-

ers of the encoder in U-Net respectively. As shown in Tab.
13, the experimental results demonstrate that, employing a
combination of { A%, A3} for DA loss, achieves the best per-
formance in downstream supervised segmentation tasks.

Table 13. Ablation on the cross-attention maps for Decoupled
Anomaly Alignment.

Al \AUROC AP Fi-max IoU
1=1,2,3 96.42 68.92 66.24 54.52
1=2,3,4 9571 64.51 6233 52.46
1=2,3(Ours)| 97.21 69.21 66.37 55.28

Ablation on the features for Coarse Feature Extraction

In the coarse feature extraction process, we extract
coarse but highly-discriminative features for anomalies
from U-Net decoder. Specifically, we investigate the im-
pact of integrating different features, denoted as F; €
RI6X16x1280 [ [R32x32x1280 [ ¢ [RO4X64X640 apg
Fy € R64x64%320 " Thege correspond to the output feature
“up-17, “up-27, “up-3~, and “up-4” layers of the en-
coder in U-Net respectively.

As shown in Fig. 10, we use the output features of
the “up-2” and “up-3” layers of the decoder in U-Net,
and apply convolution blocks and concatenation opera-
tions, then we can obtain the unified coarse feature F e
R64x64x192 " which can be used to predict masks corre-
sponding to anomaly images. As shown in Tab. 14, the ex-
perimental results demonstrate that, employing a combina-
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Figure 10. Visualization of the U-Net decoder features in mask
prediction process.

Table 14. Ablation on the features for Coarse Feature Extraction.

F, |AUROC AP Fi-max IoU

94.35 63.58 60.54 52.36
96.93 67.42 64.26 55.31
(Ours)| 97.21 69.21 66.37 55.28




Ablation on the features of VAE for Refined Mask Pre-
diction

In the Refined Mask Prediction, we combine the high-
resolution features of VAE decoder with discriminative fea-
tures from U-Net, to generate accurately aligned anomaly
image-mask pairs. In addition, we can also use the VAE
encoder features as high-resolution features. As shown in
Tab. 15, the experimental results show that, using VAE de-
coder features achieves better performance in downstream
supervised segmentation tasks.

Table 15. Ablation on the features of VAE for Refined Mask Pre-
diction.

Fres \AUROC AP Fi-max IoU

VAE encoder | 96.14 6626 63.48 54.99
VAE decoder| 97.21 69.21 66.37 55.28

Ablation on the normal image supervision for Refined
Mask Prediction

In the Refined Mask Prediction branch, we predict masks
for normal images as the supervision for the mask predic-
tion. We conduct two sets of experiments: (a) We remove
the second and the fourth term in the loss for RMP, i.e., the
normal image supervision (short for NIA in Tab. 16); (b)
We use the complete form in RMP branch loss, i.e., we use
the normal image for supervision, as in Eq. (10):

L = F(Mag, Myg) + F(Mop, Mop)

R . (10)
+ ]:(M(;fv M:jt) + ]:(Mébv Mgb)

As shown in Tab. 16, the experimental results show that,
using normal images for supervision achieves better perfor-
mance in downstream supervised segmentation tasks. We
also provide further qualitative results of the effect of nor-
mal image supervision (short for NIA in Fig. 11) on MVTec
AD.

Table 16. Ablation on the normal image supervision for Refined
Mask Prediction.

Fres |AUROC AP Fj-max IoU

w/o NIA 96.20 66.03 64.09 53.97
with NIA (Ours)| 97.21 69.21 66.37 55.28

Ablation on the Mask Refinement Module

In the Refined Mask Prediction branch, the Mask Refine-
ment Module (MRM) is utilized to generate refined masks.
We devise different structures for MRM, as shown in Fig.

12, including Case a): those without conv blocks, Case b):
with one conv block, and Case c): with chained conv blocks.
As shown in Fig. 13, we find that using the conv blocks in
Case b), which consists of two 1 x 1 convolutions and one
3 x 3 convolution, helps the model learn the features of
the defect area more accurately, rather than focusing on the
background area for using one convolution alone in Case a).
Based on this observation, we further designed a chained
conv blocks structure in Case c), and the acquired features
better reflect the defect area. This one-level-by-one level
of residual learning helps the model achieve better residual
correction results for the defect area features. As shown in
Tab. 17 in the Appendix, Case c¢) improves the performance
by +0.28% on AUROC, +2.29% on AP and + 2.29% on F} -
max, + 0.32% on IoU compared with Case b). We substan-
tiate the superiority of the MRM structures that we design,
through the results of downstream supervised segmentation
experiments.

Table 17. Ablation on the Mask Refinement Module.

Model

with MRM (a)
with MRM (b)
with MRM (c)

|AUROC AP Fi-max IoU

96.75 68.18 64.96 55.51
96.93 6692 64.08 54.96
97.21 69.21 66.37 55.28

Ablation on the threshold for mask binarization

In the Refined Mask Prediction branch, we take the
threshold 7 for the second channel of refined anomaly
masks Méf to segment the final anomaly mask. We train
supervised segmentation models using anomaly masks with
T settings ranging from 0.1 to 0.5. As shown in Tab. 18,
results indicate that setting 7 = 0.2 yields the best model
performance.

A.6. More qualitative and quantitative anomaly im-
age generation results

More detailed quantitative results In this section, we
report the detailed generation results for each category on
the MVTec AD dataset, VisA dataset, and MVTec 3D AD
dataset, which are presented in Tab. 19, Tab. 20, and Tab.
21.
More qualitative generation results

We provide further qualitative results of every category
on the MVTec AD dataset, from Fig. 15 to Fig. 16. We
report the anomaly image generation results of SeaS for
varying types of anomalies. The first column represents the
generated anomaly images, the second column represents
the corresponding generated masks, and the third column
represents the masks generated without using the Mask Re-
finement Module.

We provide further qualitative results of every category
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Figure 11. Qualitative results of the effect of normal image supervision on MVTec AD.
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Figure 12. Different structure designs for the mask refinement module in the mask prediction branch.
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Figure 13. Visualization of the MRM module intermediate results.
The top is for the MRM structure diagram, and the bottom is se-

quentially for the input image, feature maps of the MRM interme-
diate process and the predicted mask.

on the MVTec 3D AD dataset in Fig. 17. We report the
anomaly image generation results of SeaS for varying types
of anomalies. The first column represents the generated
anomaly images, and the second column represents the cor-
responding generated masks.

Table 18. Ablation on the threshold for mask binarization.

threshold |AUROC AP Fj-max IoU
7=0.1 97.56 65.33 63.38 52.40
7=0.2(Ours)| 97.21 69.21 66.37 55.28
7=0.3 97.20 66.92 64.35 54.68
7=04 9531 63.55 6197 53.03
7=0.5 94.11 60.85 59.92 50.87

A.7. More qualitative and quantitative compari-
son results of supervised segmentation mod-
els trained on image-mask pairs generated by
different anomaly generation methods

We provide further qualitative results with different
anomaly generation methods on the MVTec AD dataset.
We report the generation results of SeaS for varying types
of anomalies in each category. Results are from Fig. 18 to
Fig. 21.

We provide further qualitative comparisons on down-
stream supervised segmentation trained by the generated



Table 19. Comparison on IS and IC-LPIPS on MVTec AD. Bold indicates the best performance, while underlined denotes the second-best
result.

Crop& Defect- Anomaly
Category | Paste [23]|SDGAN [28] GAN [42]| DEMGAN [11] Diffusion [17] Ours

ISt IC-Lt|IST IC-L1 (ISt IC-L1|IST IC-Lt |IST IC-Lt |[IST IC-L¢
bottle [1.43 0.04 |1.57 0.06 |1.39 0.07 |1.62 0.12 |1.58 0.19 |1.78 0.21
cable [1.74 0.25 (1.89 0.19 |1.70 0.22 |1.96 025 (213 041 |2.09 042
capsule [1.23 0.05 [1.49 0.03 |1.59 0.04 |1.59 0.11 |1.59 021 |1.56 0.26
carpet [1.17 0.11 |1.18 0.11 |1.24 0.12 (1.23 0.13 |1.16 0.24 |1.13 0.25
grid  |2.00 0.12 |1.95 0.10 |2.01 0.12 |1.97 0.13 |2.04 044 |2.43 0.44
hazelnut |1.74 0.21 |1.85 0.16 |1.87 0.19 |1.93 024 |2.13 031 [1.87 0.31
leather |1.47 0.14 (2.04 0.12 |2.12 0.14 |2.06 0.17 [1.94 041 |2.03 0.40
metal nut [1.56 0.15 [1.45 0.28 [1.47 0.30 [1.49 032 |1.96 030 |1.64 0.31
pill 149 0.11 |1.61 0.07 |1.61 0.10 {1.63 0.16 |[1.61 0.26 |1.62 0.33
screw |(1.12 0.16 |1.17 0.10 |1.19 0.12 |1.12 0.14 |1.28 0.30 |1.52 0.31
tile 1.83 0.20 |2.53 0.21 (235 022 |239 022 (254 055 |2.60 0.50
toothbrush|1.30 0.08 |1.78 0.03 [1.85 0.03 |1.82 0.18 |1.68 0.21 |1.96 0.25
transistor {1.39 0.15 [1.76 0.13 |1.47 0.13 |1.64 0.25 |[1.57 034 |1.51 0.34
wood [1.95 0.23 |2.12 0.25 |2.19 0.29 |2.12 035 (233 037 |2.77 046
zipper [1.23 0.11 125 0.10 |1.25 0.10 [1.29 0.27 |1.39 0.25 |1.63 0.30
Average [1.51 0.14 [1.71 0.13 |1.69 0.15 |1.72 020 [1.80 0.32 |1.88 0.34

Table 20. Comparison on IS and IC-LPIPS on VisA. Bold indi- images. The segmentation anomaly maps are shown in Fig.
cates the best performance. 22. There are fewer false positives (e.g., potato_combined)
and fewer false negatives (e.g., bagel_contamination), when
DFMGAN [ AnomalyDiffusion] o — the BiSeNet V2 is trained on the image-mask pairs gener-

Category [11] [17] urs ated by our method.

ISt IC-Lt(IST IC-Lt |ISTIC-L7
candle |1.19 0.23 |1.28 0.17 1.20 0.12
capsules |1.25 0.22 |1.39 0.50 1.58 0.60
cashew |1.25 0.24 |1.27 0.26 1.21 0.28
chewinggum|1.33 0.24 |1.15 0.19 1.29 0.27
fryum  |1.28 0.20 |1.20 0.14 1.14 0.21
macaronil |1.14 0.24 |1.15 0.14 1.15 0.18
macaroni2 |[1.47 0.38 |1.56 0.38 1.57 0.39
pebl 1.12 0.16 |1.18 0.35 1.18 0.26
peb2 1.12 0.26 |1.26 0.21 1.25 0.27
peb3 1.19 0.18 [1.21 0.24 1.22 0.21
pcb4 1.21 0.28 |1.14 0.25 1.15 0.22
pipe_fryum (1.43 0.32 |1.29 0.17 1.31 0.16
Average [1.25 0.25 |1.26 0.25 1.27 0.26

Table 21. Comparison on IS and IC-LPIPS on MVTec 3D AD.
Bold indicates the best performance.

DFMGAN | AnomalyDiffusion
Category [11] [17]

ISTIC-LT|IST IC-L1 ISt IC-L 7t
bagel [1.07 0.26 |1.02 0.22 1.28 0.29
cable_gland|1.59 0.25 |1.79 0.19 2.21 0.19
carrot  (1.94 0.29 |1.66 0.17 2.07 0.22
cookie |1.80 0.31 |1.77 0.29 2.07 0.38
dowel [1.96 0.37 [1.60 0.20 1.95 0.26
foam 1.50 0.17 |1.77 0.30 2.20 0.39
peach (2.11 0.34 |1.91 0.23 240 0.28
potato  [3.05 0.35 |1.92 0.17 1.98 0.22
rope 1.46 0.29 |1.28 0.25 1.53 0.41
tire 1.53 0.25 |1.35 0.20 1.81 0.31
Average |1.80 0.29 |1.61 0.22 1.95 0.30

Ours
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Figure 14. Qualitative results of our anomaly image generation results on MVTec AD. In the first row, from left to right, are the results for
bottle, cable, and capsule categories. In the second row, from left to right, are the results for carpet, grid, and hazelnut categories.
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Figure 15. Qualitative results of our anomaly image generatlon results on MVTec AD. In the first row, from left to right, are the results for
leather, metal_nut, and pill categories. In the second row, from left to right, are the results for screw, tile, and toothbrush categories.
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Figure 16. Qualitative results of our anomaly image generation results on MVTec AD. In the first row, from left to right, are the results for
transistor, wood, and zipper categories.



Mask Image Mask Image Mask Image Mask Mask

~

°oe

~

-\
‘\‘
.

: \
CIESCIES IREAEEND

- - . -

..

Figure 17. Qualitative results of our anomaly image generation results on MVTec 3D AD. In the first row, from left to right, are the results
for bagel, cable_gland, carrot, peach, and potato categories. In the second row, from left to right, are the results for cookie, dowel, foam,
rope, and tire categories.
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Figure 18. Comparison results with the anomaly supervised segmentation model BiSeNet V2 on MVTec AD. In the figure, from top to
bottom are the results for bottle, cable, capsule and carpet categories.
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Figure 19. Comparison results with the anomaly supervised segmentation model BiSeNet V2 on MVTec AD. In the figure, from top to
bottom are the results for grid, hazelnut, leather and metal_nut categories.
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Figure 20. Comparison results with the anomaly supervised segmentation model BiSeNet V2 on MVTec AD. In the figure, from top to
bottom are the results for pill, screw, tile and toothbrush categories.
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Figure 21. Comparison results with the anomaly supervised segmentation model BiSeNet V2 on MVTec AD. In the figure, from top to
bottom are the results for transistor, wood and zipper categories.
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Figure 22. Qualitative supervised anomaly segmentation results with BiSeNet V2 on MVTec 3D AD.



We report the detailed segmentation results of SeaS for
each category on the MVTec AD datasets, compared with
DFMGAN [11] and AnomalyDiffusion [17], which are pre-
sented from Tab. 22 to Tab. 27

A.8. More qualitative comparison results of differ-
ent supervised segmentation models trained
on image-mask pairs generated by SeaS

In this section, we provide further qualitative results with
different supervised segmentation models on the MVTec
AD and MVTec 3D AD datasets. We choose three models
with different parameter quantity scopes (BiSeNet V2 [40]:
3.341M, UPerNet [38]: 64.042M, LFD [45]: 0.936M). We
report the segmentation results of SeaS for varying types of
anomalies in each category. Results are from Fig. 23 to Fig.
217.



Table 22. Comparison on supervised anomaly segmentation on BiSeNet V2.

Category DFMGAN AnomalyDiffusion Ours
AUROC AP Fj-max IoU |[AUROC AP Fj-max IoU |[AUROC AP Fj-max IoU
bottle 89.34 64.67 62.78 44.71| 99.00 88.02 80.53 68.25| 99.46 93.43 85.59 75.86
cable 93.87 6798 64.74 44.02| 92.84 69.86 66.32 46.49| 89.85 72.07 71.58 53.24
capsule | 74.88 16.43 23.01 29.97| 92.71 38.11 40.67 19.44| 86.33 24.64 30.54 39.70
carpet 94.53 4253 47.44 39.88| 98.65 73.10 65.83 43.25| 99.61 82.30 72.94 55.52
grid 96.86 24.40 37.40 29.93| 80.59 8.08 16.79 14.26| 99.36 37.91 42.50 39.80
hazelnut | 99.87 96.75 90.07 71.68| 97.71 63.34 59.87 43.12| 97.82 78.55 73.09 68.47
leather 97.50 51.10 52.26 50.67| 99.30 57.49 59.62 43.94| 9891 59.84 58.62 45.82
metal_nut | 99.39 97.59 92.52 70.40| 99.03 95.67 88.69 58.8 | 99.69 98.29 93.23 74.40
pill 97.09 8398 79.26 36.39| 99.44 93.16 86.62 41.18| 98.31 76.97 68.00 55.43
screw 97.94 37.10 41.01 31.63| 94.08 17.95 2590 20.00| 97.64 40.20 45.35 38.43
tile 99.65 97.08 91.16 75.94| 97.79 85.58 78.28 60.46| 99.67 97.29 91.48 75.75
toothbrush| 97.70 51.32 54.05 23.38| 98.43 49.64 54.08 26.53| 97.15 46.09 49.02 28.56
transistor | 84.31 45.34 46.07 30.00| 98.85 85.27 77.95 49.83| 96.75 69.52 66.11 57.24
wood 98.32 64.82 63.11 58.99| 96.78 63.38 60.31 45.73| 98.38 80.81 74.03 56.22
zipper 97.29 65.18 63.24 49.93| 98.81 78.89 72.66 62.03| 99.23 80.27 73.41 64.80
Average | 94.57 6042 60.54 45.83| 96.27 64.5 6227 42.89| 97.21 69.21 66.37 55.28

Table 23. Comparison on image-level anomaly detection on BiSeNet V2.

Category DFMGAN AnomalyDiffusion Ours
AUROC AP Fi-max|AUROC AP Fj;-max|AUROC AP Fj-max
bottle 96.74 98.75 95.35 | 98.14 99.34 97.67 | 100.00 100.00 100.00
cable 79.47 85.00 74.13 | 9537 96.71 9291 | 94.61 96.39 89.83
capsule | 85.51 95.16 89.82 | 84.06 9501 89.74 | 88.81 96.92 89.21
carpet 91.42 9629 88.89 | 90.55 96.41 90.32 | 98.16 99.31 97.56
grid 99.64 99.82 97.56 | 81.19 8992 8395 | 99.17 99.63 98.73
hazelnut | 100.00 100.00 100.00 | 93.39 95.74 90.91 | 100.00 100.00 100.00
leather | 98.31 99.23 95.24 | 100.00 100.00 100.00 | 95.83 98.38 95.93
metal.nut | 97.37 99.16 94.66 | 99.01 99.66 97.71 | 100.00 100.00 100.00
pill 84.86 9527 91.00 | 90.38 97.43 9135 | 96.59 99.12 95.24
screw 7495 8550 80.72 | 58.18 7532 81.25 | 77.24 89.55 80.60
tile 99.47 99.74 99.12 | 98.78 99.44 97.39 | 100.00 100.00 100.00
toothbrush| 78.33 87.73 83.72 | 78.33 89.26 79.17 | 90.42 9449 8947
transistor | 79.52  75.77 69.57 | 9440 94.68 9434 | 99.23 98.39 94.92
wood 98.87 99.46 97.67 | 90.48 94.12 93.33 | 100.00 100.00 100.00
zipper 98.97 99.64 97.56 | 98.89 99.62 97.56 | 100.00 100.00 100.00
Average | 90.90 94.43 9033 | 90.08 94.84 91.84 | 96.00 98.14 9543




Table 24. Comparison on supervised anomaly segmentation on UPerNet.

Category DFMGAN AnomalyDiffusion Ours
AUROC AP Fj-max IoU |[AUROC AP Fj-max IoU |[AUROC AP Fj-max IoU
bottle 87.94 56.89 56.56 45.41| 99.54 93.01 8594 7531| 99.28 91.73 84.53 78.73
cable 87.52 6430 65.61 41.02| 91.00 68.12 67.49 51.84| 91.08 76.25 74.63 59.00
capsule | 67.92 12.31 20.32 30.47| 97.64 51.90 51.66 37.00| 92.09 39.60 43.89 50.18
carpet 95.85 36.05 34.52 48.10| 99.45 82.13 72.55 53.17| 99.67 82.01 73.53 60.60
grid 97.49 29.67 36.15 31.37| 9422 2897 38.50 32.93| 99.18 44.94 48.28 44.21
hazelnut | 99.36 79.76 71.10 72.90| 97.77 70.48 67.93 54.47| 99.54 81.84 75.48 73.30
leather | 80.97 17.60 2621 30.17| 9948 63.46 60.54 48.70| 99.42 68.26 65.52 57.01
metal_nut | 98.44 95.64 91.48 64.92| 98.62 95.11 88.62 61.31| 99.70 98.33 92.90 76.07
pill 97.58 83.74 80.02 42.33| 99.33 95.04 88.77 49.18| 98.59 81.16 74.26 62.62
screw 97.49 53.83 53.02 42.05| 93.89 36.60 42.68 34.08| 98.97 52.02 51.65 46.61
tile 99.79 97.29 91.11 77.46| 94.70 7334 67.79 58.54| 99.67 95.89 90.71 77.89
toothbrush| 97.42 51.09 59.23 28.33| 97.52 60.67 59.46 33.98| 98.50 63.62 63.07 42.09
transistor | 82.07 36.31 39.48 27.44| 94.26 73.68 69.50 53.64| 93.88 70.37 68.12 56.98
wood 9790 69.02 62.21 63.10] 96.09 70.10 64.38 51.44| 99.28 85.28 76.28 65.09
zipper 97.28 71.60 66.64 54.54| 99.54 86.18 78.50 66.47| 99.17 85.01 77.57 68.21
Average | 92.33 57.01 5691 46.64| 96.87 69.92 66.95 50.80| 97.87 7442 70.70 61.24
Table 25. Comparison on image-level anomaly detection on UPerNet.
Category DFMGAN AnomalyDiffusion Ours
AUROC AP F;-max|AUROC AP Fi-max|AUROC AP Fj-max
bottle 94.19 97.86 93.18 | 100.00 100.00 100.00 | 100.00 100.00 100.00
cable 85.64 90.03 80.33 | 95.58 97.06 92.56 | 94.40 9638 92.44
capsule | 81.04 94.26 87.01 | 96.00 98.77 9548 | 9443 98.44 9221
carpet 96.72 98.58 93.75 | 98.68 99.53 98.36 | 99.94 99.97 99.20
grid 98.33 99.13 96.30 | 96.67 98.73 97.44 | 99.76 99.88 98.73
hazelnut | 99.84 99.87 97.96 | 99.17 99.43 97.87 | 100.00 100.00 100.00
leather 7991 90.70 81.75 | 100.00 100.00 100.00 | 100.00 100.00 100.00
metal_nut | 98.30 99.38 97.71 | 98.65 99.62 9841 | 99.72 9991 99.21
pill 88.54 96.56 9239 | 91.23 97.78 9091 | 98.28 99.58 97.92
screw 89.01 94.54 88.24 | 85.06 93.87 8533 | 93.47 97.07 90.45
tile 99.68 99.81 99.13 | 99.68 99.81 99.13 | 100.00 100.00 100.00
toothbrush| 75.00 86.99 80.00 | 90.00 95.13 90.00 | 95.00 97.65 94.74
transistor | 83.04 73.59 74.19 | 100.00 100.00 100.00 | 99.52 99.16 96.43
wood 9336 95.60 9545 | 98.62 99.49 97.62 | 99.87 99.94 98.82
zipper 98.48 99.51 98.14 | 100.00 100.00 100.00 | 100.00 100.00 100.00
Average | 90.74 9443 90.37 | 96.62 98.61 96.21 | 98.29 99.20 97.34




Table 26. Comparison on supervised anomaly segmentation on LFD.

Category DFMGAN AnomalyDiffusion Ours
AUROC AP Fj-max IoU |[AUROC AP Fj-max IoU |[AUROC AP Fj-max IoU
bottle 90.41 61.51 58.49 40.19] 98.71 89.64 81.55 67.10| 99.28 92.65 84.86 73.82
cable 96.49 79.40 75.25 53.47| 97.89 79.85 72.75 53.69| 94.53 75.41 72.70 55.98
capsule | 91.82 56.11 58.56 32.50| 95.80 38.17 48.92 32.04| 91.80 49.76 53.69 41.14
carpet 89.10 48.04 49.89 39.46| 94.83 53.15 51.79 42.21| 99.10 82.74 74.51 57.56
grid 89.18 34.89 41.21 19.21| 85.19 2432 3476 18.22| 98.78 62.24 58.44 41.69
hazelnut | 99.36 95.16 89.80 76.43| 98.54 77.39 70.42 4597| 98.97 88.00 81.77 73.39
leather | 97.82 51.86 52.25 48.09| 98.99 65.73 62.85 42.65| 99.11 76.49 69.30 56.51
metal_.nut | 98.16 95.16 90.99 63.02| 99.38 97.34 91.63 64.59| 99.23 96.66 91.42 75.15
pill 95.80 7590 70.31 31.73] 98.96 92.51 85.35 50.04| 98.11 79.63 72.54 56.73
screw 93.96 38.00 41.69 30.88| 92.68 44.64 49.17 34.08| 98.27 52.40 52.32 41.02
tile 97.37 88.79 82.05 66.30| 92.98 79.59 73.52 55.08| 99.38 96.24 89.90 75.50
toothbrush| 95.17 5521 53.95 28.83| 98.31 68.60 66.14 29.67| 96.97 54.84 53.19 2791
transistor | 97.68 89.68 84.18 46.98| 98.20 83.97 75.84 44.22| 98.80 84.32 77.02 55.57
wood 97.47 77772 7091 58.77| 95.68 67.54 63.06 42.78| 98.60 88.57 81.46 62.94
zipper 93.80 58.43 56.82 46.44| 98.42 84.05 77.08 64.14| 99.15 86.67 79.09 69.37
Average | 9491 67.06 65.09 45.49| 96.30 69.77 66.99 45.77| 98.01 77.77 72.81 57.62
Table 27. Comparison on image-level anomaly detection on LFD.
Category DFMGAN AnomalyDiffusion Ours
AUROC AP F;-max|AUROC AP Fi-max|AUROC AP Fj-max
bottle 96.98 98.76 95.35 | 100.00 100.00 100.00 | 100.00 100.00 100.00
cable 90.98 9421 88.14 | 99.52 99.55 97.71 | 92.05 9495 88.70
capsule | 86.32 9599 88.46 | 83.25 94.62 89.44 | 93.80 98.19 93.42
carpet 88.02 9533 87.60 | 86.00 93.42 87.22 | 97.98 99.22 96.67
grid 85.48 92.61 85.71 | 93.69 97.08 91.14 | 96.79 98.76 96.10
hazelnut | 99.90 9991 9897 | 98.28 98.60 95.83 | 100.00 100.00 100.00
leather 95.93 98.15 93.65 | 99.90 99.95 99.20 | 100.00 100.00 100.00
metal_nut | 96.16 98.57 96.18 | 99.01 99.65 98.46 | 98.58 99.54 97.64
pill 82.85 94.40 92.00 | 94.15 98.42 9447 | 98.16 99.50 96.84
screw 82.60 92.15 82.22 | 81.54 91.32 82.05 | 87.83 9439 85.54
tile 98.94 9943 96.55 | 9825 99.13 95.65 | 99.36 99.69 99.12
toothbrush| 77.08 87.68 80.95 | 100.00 100.00 100.00 | 87.92 94.08 87.80
transistor | 88.04 85.06 77.78 | 97.38 96.57 92.86 | 98.10 96.90 94.55
wood 99.87 99.94 98.82 | 97.24 98.70 96.47 | 100.00 100.00 100.00
zipper 97.07 98.78 96.25 | 99.01 99.71 99.39 | 100.00 100.00 100.00
Average | 91.08 9540 90.58 | 95.15 97.78 94.66 | 96.70 98.35 95.76
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Figure 23. Qualitative comparison results with the supervised segmentation models on MVTec AD. In the figure, from top to bottom are
the results for bottle, cable, capsule and carpet categories.
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Figure 24. Qualitative comparison results with the supervised segmentation models on MVTec AD. In the figure, from top to bottom are
the results for grid, hazelnut, leather and metal_nut categories.
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Figure 25. Qualitative comparison results with the supervised segmentation models on MVTec AD. In the figure, from top to bottom are
the results for pill, screw, tile and toothbrush categories.
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Figure 26. Qualitative comparison results with the supervised segmentation models on MVTec AD. In the figure, from top to bottom are
the results for transistor, wood, and zipper categories.
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Figure 27. Qualitative comparison results with the supervised anomaly segmentation models on MVTec 3D AD. In the figure, from top to
bottom are the results for cable_gland, carrot, dowel, foam and peach categories.
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A.9. Comparison with the Textual Inversion

We conduct the experiment of only using the Textual Iny
sion (TT) [12] method to learn the product, and the genera
images are shown in Fig. 28. The TI method struggles
generate images similar to the real product due to the I
ited number of learnable parameters. In contrast, for
AIG method, the products satisfy global consistency w
minor variations in local details, while the anomalies h
randomness, so the generated products should be glob:
consistent with the real products. Therefore, unlike the .
method AnomalyDiffusion [17], where the TI method al¢
is sufficient to meet the anomaly generation needs, we fiuc-
tune the U-Net to ensure the global consistency of the gen-

mvntad mwndeabn

Transistor Wood

Capsules Metal_nut Pill Screw

Textual -— |
Inversion

Ours

Figure 28. Qualitative comparison on the generation results with
Textual Inversion.

A.10. More experiments on lighting conditions

We choose one defect class from peach, a product in the
MVTec3D dataset, that has significant variations in light-
ing conditions and backgrounds, to conduct experiments.
Images with strong lighting conditions depict the top side
of the peach, whereas those with weak lighting conditions
show the bottom side. Consequently, the background in the
images, whether the top or bottom of the peach, also differs.
We selected three training sets with different lighting con-
ditions for experiments: 1) only images from the top side
with strong lighting condition, 2) only images from the bot-
tom side with weak lighting condition, 3) half of the images
from the top side with strong lighting condition, and a half
from the bottom side with weak lighting condition. The
generated images of different settings are shown in Fig. 29.
It can be seen that SeaS is robust against lighting conditions
and background variations.

A.11. More results on generation of small defects.

SeaS is capable of preserving fine-grained details in small-
scale anomalies, as shown in Fig. 30. However, generating
extremely subtle anomalies may be challenging due to the
limited resolution of the latent space. We will explore this
point in our future work.
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Figure 29. Visualization of the generation results on MVTec3D
AD on different lighting conditions and backgrounds. In the fig-
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Figure 31. T-SNE visualization of different anomaly types of the
same product in real and generated data.

A.12. More analysis on generation of unseen
anomaly types.

SeaS can generate diverse unseen anomalies within known
anomaly types as analyzed in Appendix A.2. However,
generating truly unseen anomaly types remains challeng-
ing. The t-SNE visualizations in Fig. 31 show that different
types of anomalies of the same product form compact clus-
ters. Intra-cluster variation is achievable, but cross-cluster
generalization is limited by the lack of prior knowledge. We
believe that generalizing to unseen anomaly types is impor-
tant and will explore this in future work.

A.13. More experiments on comparison with
DRAEM.

As shown in Tab. 28, training DRAEM[41] with the same
anomaly images used in SeaS leads to better results than us-
ing only anomaly-free images. However, DRAEM + SeaS
achieves further improvements, demonstrating that the gain
is not only from real anomalies but also from the diverse
and realistic anomalies generated by SeaS.



Table 28. Comparison on combining generated anomalies with synthesis-based anomaly detection method across multiple datasets.

MVTec AD | VisA | MVTec 3D AD

S tion ‘

Pixel-level

Models Image-level
AUROC AP Fj-max IoU

AUROC AP Fj-max

Pixel-level Image-level
AUROC AP Fj-max IoU |[AUROC AP Fj-max

Pixel-level Image-level
AUROC AP Fj-max IoU |[AUROC AP Fj-max

DRAEM
DRAEM + training data
DRAEM + SeaS

98.00 98.45 96.34
9743 98.84 97.84
98.64 99.40 97.89

97.90 67.89 66.04 60.30
96.41 7442 71.86 59.84
98.11 76.55 72.70 58.87

86.28 8530 81.66
83.74 86.00 82.75
88.12 87.04 83.04

9292 17.15 2295 13.57
94.63 39.22 43.06 29.02
98.45 49.05 48.62 35.00

79.16 90.90 89.78
73.86 88.46 86.69
8545 93.58 90.85

86.73 14.02 17.00 12.42
8243 1936 25.05 17.01
95.43  20.09 26.10 17.07
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