Appendix of Straighten Viscous Rectified Flow via Noise Optimization

Jimin Dai!, Jiexi Yan?, Jian Yang!, Lei Luo!
'PCA Lab, Nanjing University of Science and Technology, >Xidian University
{jimindai, csjyang}l@nijust.edu.cn, {jxyanl995, luoleipitt}@gmail.com

A. Proof
In this section, we give some definitions and proofs of theorems mentioned in the main paper.

Definition 2. (X, X1) is called an arbitrary coupling when the noise Xy and the image X, are randomly sampled and
randomly matched.

Definition 3. (X, X1) is called a deterministic coupling if the noise X is randomly sampled, and the image X is generated
by a pre-trained model that uses the noise X as the input.
Theorem 1. In (n x n)-dimensional space, for straight-line interpolation trajectories X ) = {Xt(') :t e o, 1]}, the prob-
ability of X ) and X9) crossing at point X; at time step t is P ~ O(e=¢"*™) ¢ > 0.

Proof. In an (n x n)-dimensional space, two distinct trajectories X () = {Xt(') 1t €0, 1]} crossing at the same point
X, at time ¢ can be represented as:

XD+ 1 -)x =tx9 4 (1 -5 x§,
ie. , .
ey
X~ X9 _ (x© _ x0)

As t is a scalar and X} is an (n x n)-dimensional matrix, for the above equation to hold, the following consistency condition
must be satisfied:

(4) ()
t= 2000 ~ P k=0,1,...,n—1
(1) (4) (1) (4) » T ’
Xo,(k,l) - Xof(k,l) - (Xl,(k,l) - le(k,l))

where (k, 1) denotes the coordinate of the (n x n)-dimensional matrix, the consistency condition requires that the value of
each component in the matrix is equal to ¢. Assume that the probability of the component at coordinate (k, ) being equal to
tis P € [0, 1], the probability of satisfying the consistency condition would be P.ostant = p(”X") = e(nxn)In(p)

Given that P € [0,1], and In(p) < 0, let P.opstant = e ™™ ¢ > 0. Due to the independence assumption (which
is commonly made in generative models, where the modeling of each dimension is assumed to be independent), P..,stant
decreases exponentially with (n X n), s0 Peonstant ~ O(e’c(”xn)).

Theorem 2. For each intermediate state X, along a PF trajectory, the velocity differences between X, are greater than their
state differences: 4 . ‘ ,
A(Umf(%)’ Uref(j)) > A(Xt(’), Xt(J)),

where A(-,-) = E][||- — ||2F] and E[] is the expectation.
Proof . In the context of flow matching models, we introduce the Frobenius norm to measure the difference between data

points. Since the training involves randomness, we introduce the expectation to quantify the “average difference” between
data points. To ensure that the metric result is non-negative, we define A(-, ) as the expectation of the squared Frobenius

norm, i.e. A(-,-) = EJ[||- — va]



Given two noise-image data pairs (Xo(i),Xl(i)) and (Xo(j),Xl(j)), where X, X0 ~ N(0,I) and X, x,0)
are samples from the image distribution. The intermediate states obtained by straight-line interpolating them are X, =
tX1 D+ (1—1)Xo® and X, = £X,) 4 (1—#) X, and the difference between the two intermediate states is represented
as:

AX, D, X,00) [HXtu Xt(a)H }
=F {Ht — X1 ) 4 (1= 8)(X® — Xo(j))Hi}
= ’E [Hxl(“ —x, Hi} +(1—1)%E [HXO@ - XOU')HQF} +2t(1 - O)E [Tr((Xl(i) — X T (X, — x,0)))] .
Since Xo(i) and X @) are independent, the cross term is 0. Therefore, we simplify to:
AKX, X,0)) = 2 [HXlu) H } (1— 17K [HXO( i _ XO(a)H }

Given that XV, X, ~ N(0, 1), we have

X5 - X 2] = E lz (Kot = X0, ”)2]
k=1 1=1
7 2
=YY E [(XO,(k,l) X5 k) ]
k=1 1=1
Ny 0 G) ) G)
= Z Z {Var(X0 ey~ Xoen) + (E [Xo,(lc,l) - XO?(M)D }
k=1 1=1
= Z Z [Var(Xélzk l)) + Var(XéJ()k l))}
k=11=1
= 2n?

where n X n is the dimension of Xg, Xq (1) represents the element value of X at the coordinate (k,1) . so we get
AX, D, X,y = 2A(X, D, X, 0)) 42021 — 1)2.

The constant velocity fields for these two sample pairs are v,.. f(i) =X 1(1) — Xo(i) and v, f(j) =X, G) Xo ( ), and the
difference between the two velocity fields is represented as:

. . . . . . 2
Awres D vy @) = U’le ~ X~ (x, @ _XO(]))HF] ’
Similarly, since XV, X,) ~ N (0, I), we have

Aref D, v059)) = E [HXl(i) _x,

2 , ,
} +E {HX()@) — XV

2
:
= A(Xy (@ Xl(J))+2n
Ast € [0, 1], we have:
A(Uref( i) Uref(])) — AX, D, X, )
=(1—tHAX, D, X,9)) 4 2n2 (2t — 1?)

>0

)

so we can get A(vpe ), v, 0)) > A(X, D) X, ).



Definition 4. We denote that X is rectifiable if vX (denote neural velocity field train by X) is locally bounded and the
solution to the integral equation of the form

t
Zy = Zo +/ vX(Zy, t, v A)dt, Yt € [AL 1], v =0, Zy = Xo
0

exists and is unique. In this case, Z = {Z; : t € [0,1]} is called the viscous rectified flow induced by X.

Theorem 3. Assume X is rectifiable and Z is its viscous rectified flow. The marginal law of Z; equals that of X, at every
time t, i.e., Law(Z;) = Law(X,), Vt € [0, 1].

Proof. The velocity field of the viscous rectified flow, after introducing the historical velocity term, is defined as:
vp(Xy, b, he) = E[X;| Xy = 3],

where x; represents the specific sample value of X;, hy = vi_ay, Xt = 0, X represents the time derivative. After the PF
begins to evolve, the historical velocity term v;_a, transitions from 0 to the conditional distribution:

P(ht|ve,t—At) = 5(ht - Ue,t—At),

indicating that at time step ¢, the historical velocity is deterministic and corresponds to the velocity predicted by the velocity
field from the previous time step. Therefore, the joint distribution of X} can be represented as:

(e, he) = me(2e) P(he|vos—at)-

Assume (¢, hy) is a smooth test function that satisfies appropriate boundary conditions. We integrate it as follows:
I(t) = /@(l’u he) Tt (x4, he)dxidhy.

From ﬁ't($t, ht) = Wt(xt)P<ht|’Ug,t_At), we obtain

I(t) = /@(%t, ht)ﬂ-t(xt)é(ht — ve,t—At)dxtdht~

Using the properties of the Dirac delta function, the integral over the h; part can be simplified to:

I(t) :/@(ﬂftave,t—m)ﬂt(xt)dﬂit.

Then, differentiate 7(¢) with respect to time ¢, and we get:

d d
%I(t) = ﬁ/@(xtave,tht)ﬂ—t(xt)d‘rt‘

Since (¢, vg,t—a¢) only depends on x; and vg s+, Where vy ¢—a; s the velocity at the previous time step and does not
directly depend on time ¢, we can apply the chain rule to compute the derivative of 7; () with respect to time:

d
%I(t) :/99($ta'U(),tht)atWt(mt)dxb

Next, consider the advection term V, - (v (24, t, he )T (4, he)). Similarly, substitute 7 (¢, he) = 7 (2:)0(he — vo t—At)
and integrate with the test function:

J(t) = / Vo, - (oo, t, he) i ()0 (he — vo1ar)) @(e, he)daedhy.

First, integrate h;:

J(t) = /th (vo (e, t, v t—nr)Te(xr)) (@t Vo t—Ar) Ay



This expression indicates that the convection term depends only on vg(x, t, vg ;—a¢) and m;(x¢), while the historical velocity
hy is fixed as vg t— A by the Dirac delta function.
By adding the time derivative and the convection term, we obtain the continuity equation:

d

%I(t) +J(t) = /Sﬁ(l't»’ua,tht)atﬂ't(l't)dxt + / Va, - (e, t, v, t—ae)me(21)) (@4, Vo 1 —Ar) day.

Based on the properties of the continuity equation % 1(t) + J(t) = 0, we have:

/QO(l‘t, Ua,t—At) (8t77t(3?t) + th : (vg(xt,t, U@,t—At)Tl't(xt))) dzy = 0.

Since @(x¢, ht) is an arbitrary smooth test function and the integral over z; and h; spans the entire space, the expression
inside the integral must be zero, i.e.,

Oy () + Vi, - (vo(Te,t, v, 0—ar)Te () = 0.

Therefore, by introducing the test function ¢(x¢, hi), we have proven that under the condition 7y (x¢, hy) = m¢(x¢)d(hy —
Vgt — At), Xy still satisfies the continuity equation:

Osi(wt, he) + Vg, - (UX(xt, t, hy)7e (e, he)) = 0.

During inference, because Z; is driven by the same velocity field v, its marginal distribution Law(Z;) will solve exactly
the same equation under the same initial conditions Zy = Xj. Since, under our setup, both 7, and X follow the same
distribution (whether sampled directly from the standard Gaussian distribution or from the noise distribution optimized via
reparameterization), and based on the uniqueness theory [3] of the solution to the continuity equation, we conclude that their
marginal distributions are identical:

LaW(Zt) = ]l;aVV()(t)7 Vit € [07 1}

B. Additional Results

In this section, we present additional experimental results. Fig.I provides a visualization of the inference trajectories for both
RF and VRFNO on synthetic data, further validating the effectiveness of VRFNO in straightening the trajectories. Fig.II
to Fig.I'V show the qualitative results generated by VRFNO on the CIFAR-10 dataset at different inference steps, compared
with the RF method. As VRFNO’s generated images are influenced by the encoder-extracted prior information from real
images, and different models generate slightly different images for the same noise, we cannot use identical noise in VRFNO
and other models (Other models do not involve the use of real image prior information) to produce comparable images for a
direct comparison. Nevertheless, visual inspection clearly demonstrates that VRFNO, as an alternative to Reflow, achieves
performance comparable to or even superior to that of RF.

Tab.X1 compares the model parameter counts required by VRFNO and other methods. VRFNO introduces a new joint
framework of an encoder and neural velocity field on top of RF. Although it requires training an additional encoder compared
to RF, the parameter count required by the encoder is much smaller than that of the neural velocity field, so it does not impose a
significant resource burden. CAF improves RF by proposing to use the neural initial velocity field and the neural acceleration
field for joint inference, where the neural initial velocity field provides the estimated initial velocity to the neural acceleration
field, offering auxiliary information about the direction of the PF. This means that it requires training two neural velocity
fields. These two fields have the same architecture and are used as the neural initial velocity field and the neural acceleration
field, respectively. Compared to VRFNO, CAF incurs a higher resource cost. Notably, the model architecture of CAF is
different from that of RF, while our method adopts the model architecture of RF. Therefore, in experiments with different
resolutions, VRFNO uses the same number of parameters for the neural velocity field as RF. However, in experiments with
resolutions of 64 x 64 and above, we follow RF and change the model architecture, resulting in a decrease in the number of
parameters.

Tab.X2 provides experimental evidence supporting the analysis of Reflow in Section 2.2. Diffusion models typically
exhibit rapid convergence in the early stages of training, followed by an extended plateau period during which their generative
capabilities slowly improve. Therefore, the initial phase of training provides an intuitive window for observing the learning
behavior of models under different data and training strategies. Based on this, we select the first 5,000 training iterations as
the analysis interval to investigate the impact of different training data and strategies on model performance. Specifically,



Table X1. Comparison of parameters of each method

Method Resolution Parameters of model-1(M) Parameters of model-2(M)
RF 32 x 32 Neural velocity field(64.4) -
RF 64 x 64 Neural velocity field(28.6) -

CAF 32 x 32 Neural initial velocity field(55.7) Neural acceleration field(55.7)
CAF 64 x 64 Neural initial velocity field(295.9) Neural acceleration field(295.9)

VRENO 32 x 32 Encoder(2.4) Neural velocity field(64.4)
VRFNO 64 x 64 Encoder(5.0) Neural velocity field(28.6)
VRENO 128 x 128 Encoder(15.3) Neural velocity field(80.2)
VRENO 256 x 256 Encoder(15.5) Neural velocity field(90.9)

Table X2. Comparison of data volume and number of data reuse

Coupling Data volume Number of data usage  Training iterations FID({)
1 200 425.90

100000 5 1000 207.05

Deterministic 25 5000 45.16
coupling 1 1000 218.29
500000 2 2000 110.45

5 5000 48.43

. 1 1000 355.27
?;ngia; . 500000 5 5000 347,61

- 1 5000 347.69

we employ the following four configurations to train the Neural Velocity Field from scratch: (1) 100,000 deterministic
couplings; (2) 500,000 deterministic couplings; (3) 500,000 arbitrary couplings; (4) Unlimited arbitrary couplings (where
noise is dynamically sampled and randomly paired with real images during training, rather than using a pre-stored finite set
of coupled data). In the experimental setup, the batch size is fixed at 500, and the NFE is set to 1. We ensure that the total
amount of data encountered by all models from the start of training up to the current training iteration is identical. This
eliminates the influence of data volume on the results, allowing us to focus solely on the differences in data and strategies.

Through experiments and analysis, we find that the success of Reflow can be attributed, but is not limited, to the reuse
of deterministic couplings. As shown in Tab.X2, when the number of training iteration is 1,000, the training with 100,000
data points reuses the data 5 times, while the training with 500,000 data points has only traversed the training data once.
Based on the FID score, the training with 100,000 data points yields better results. Similarly, when the number of training
iteration is 5,000, the training with 100,000 data points reuses the data 25 times, while the training with 500,000 data points
has only traversed the training data 5 times. Again, the training with 100,000 data points performs better according to the
FID score. We also compared the difference between training with and without data reuse when using arbitrary couplings.
As shown in the tab.X2, there is almost no difference between the two. Additionally, we compared the results of training with
deterministic couplings and arbitrary couplings when data is not reused, as seen in the 4th and 7th rows of the tab.X2. The
results indicate that using deterministic couplings improves the image quality during fast sampling. Therefore, we conclude
that the effectiveness of Reflow relies on two key factors: (1) the use of deterministic couplings as training data and (2) data
reuse. However, data reuse only proves effective when training with deterministic couplings, which aligns with the distillation
strategy’s mechanism mentioned in the main paper.

The main paper mentions that there is a distribution gap between the images in the deterministic couplings and the real
images in the dataset. This distribution gap causes error accumulation during Reflow training, leading to a gradual decline in
the image quality generated by each generation of the model, while the inference trajectory becomes progressively straighter.
This phenomenon can be clearly observed in Tab.X3, for the first to third generations of the RF, when using the RK45 adaptive
sampler, the sampling steps decrease progressively, and the quality of the generated images also correspondingly declines.
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Figure 1. Visualization of inference trajectories of different models on synthetic data.
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Figure IV. Qualitative results of different models on CIFAR-10 (III). Image generation with 10 steps

Table X3. Performance comparison among N-RFs

N-RF NFE IS(1) FID(})
I-RF 127 960 258
2RF 110 924 336
3-RF 104 9.01  3.96




C. Implementation of Reflow

RF attributes the curvature of inference trajectories to the model’s loss function being defined to minimize the expected
difference between the predicted and the ground truth velocity: at the crossing point of trajectories, the model’s prediction
becomes the average velocity of all intermediate states that pass through the crossing point. This averaging effect results in
a curved trajectory, causing the model to lose the desirable properties of a straight flow. To straighten the PF trajectory and
enable few-step or single-step generation, RF introduces Reflow.

Reflow samples Zj from the initial distribution 7y and inputs it into a pre-trained model (referred to as the “1st generation
model”) to generate a corresponding sample Z; that approximates the target distribution. These pairs (Zy, Z1) are called
deterministic coupling. In a deterministic PF, the sampling process can be formalized as an initial value problem for the
ODE. Due to the uniqueness of the ODE solution, the trajectories between these deterministic couplings are not crossing.
However, these trajectories are usually not straight lines. Therefore, Reflow performs straight-line interpolation on these
deterministic couplings to obtain new straight-line trajectories, which are then used to fine-tune the model. (Note that,
although the inferred curved paths between deterministic couplings are not crossing, the straight-line trajectories obtained by
performing straight-line interpolation on these deterministic couplings may still have a few crossing points.)

The newly fine-tuned model (referred to as the “2nd generation model”) can be viewed as a neural velocity field trained
on straight-line trajectories with a small number of crossing points (fewer than the crossing points between straight-line
trajectories from arbitrary couplings). The trajectories between the deterministic couplings generated by the 2nd generation
model will be straighter compared to those from the 1st generation model, and similarly, no crossing points will occur. To
make the generated trajectories even closer to straight lines, this process can be repeated. Deterministic couplings generated
by 2nd generation model can be used to fine-tune and obtain the 3rd generation model, and so on.

D. Experiment Configuration

Our experiments follow the experimental setup and model framework of RF. Additionally, the encoder training does not use
exponential moving average for smoothing. For the newly added hyperparameters, « is set to 0.0000001, At is set to 0.01,
and ¢ is randomly sampled from [At, 1] with intervals of At.

E. Encoder and Noise Optimization
E.1. Architecture of Encoder

In the main paper, we mentioned that our encoder is refer to the encoder architecture in VAE [2]. Fig.V shows our encoder
architecture, which is an improvement upon the original VAE’s encoder to introduce randomness. Specifically, after the
encoder extracts features and before these features are passed through the fully connected layer to obtain the mean and
variance, we introduce Gaussian noise and fuse it with the features using a random mask. This approach ensures that when
different noises match the same image, the means and variances used for optimization differ. This difference not only makes
the model more robust but also ensures the randomness of subsequent image generation.

E.2. Noise Optimization

In Section 3.2, we discussed the differences between our noise optimization method and the traditional approach, with its
schematic diagram shown in Fig.VI. Specifically, the traditional noise optimization method typically iterates and optimizes
based on the evaluation score from the reward model, using gradient updates, and usually requires multiple iterations of
updates. For instance, [1] requires up to 50 iterations of updates to obtain the final optimized noise. In contrast, our noise
optimization method leverages prior information from the existing dataset and obtains the optimized noise through 2 matrix
operations. The specific implementation involves the encoder outputting two matrices, which are then multiplied and added
with the original noise, respectively. This optimization method is formally equivalent to the reparameterization technique,
which is why we refer to it as using reparameterization technology for noise optimization.

Our method leverages the prior information provided by the dataset (i.e., the mean matrix and variance matrix), which
eliminates the need for iterative optimization starting from the initial random noise.Typically, prior information represents
the statistical properties of the data, offering an effective direction for noise optimization, allowing the noise to quickly
converge to an approximate optimal solution. Additionally, by employing reparameterization techniques, we transform the
noise optimization problem into multiplication and addition operations involving the noise matrix, variance matrix, and mean
matrix.This approach is, in form, equivalent to directly reconstructing the statistical properties of the noise in certain cases,
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Figure VI. Schematic diagram comparing the traditional noise optimization method with ours.

without the need to iteratively update each noise component. Therefore, in practical applications, only one iteration is needed
to achieve the optimization goal.

During the sampling process, although prior information from the images in the dataset is used to optimize the noise, it
does not affect the diversity of the generated images. As shown in Fig. VI, the left side shows images randomly sampled from
the dataset, which are used to input the encoder and generate the mean and variance matrices for noise optimization. The
right side shows the images generated by the noise optimized using the information from the left-side images. The similarity
between these images varies, maintaining the diversity of image generation.
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Figure VII. Images taken from the dataset for optimizing noise and the corresponding generated images.

F. Application in Downstream

The mechanism and concept of VRFNO can also be applied to downstream applications to further enhance the performance of
related models on specific tasks. For example, [5] uses a conditional adapter to fuse the watermark with the image. Training
the adapter with feedback from the main model—similar to VRFNO—may improve the generation quality. MACS in [7]
requires multi-step generation. Incorporating the VRFNO mechanism—using audio embeddings to optimize the noise—may
accelerate generation. [4] can use the VRFNO training framework by introducing a noise modification module jointly fine-
tuned with the main model. This module filters out phrases to be erasured and embeds the remaining phrases into the noise
for subsequent generation. [6] can learn a noise subspace for each image as discussed in VRFNO, enabling noise sampling
from this subspace during training and avoiding the computational overhead of sorting and regrouping samples and noise
within a batch.
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