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Supplementary Material

A. Potential Applications
Transparent Image Editing. By not inpainting from the
pure noise, our method can also serve as a transparent im-
age editor naturally. As shown in Fig. 1, users can plot
color strokes on the original transparent image. These color
strokes will be considered as a mask. Then, we add noise
to the drawn RGB and alpha map with a strength of 0.99 as
the initial noise. Finally, we perform denoising following
the previous approach to obtain the edited result.
Extending to Community Models. Since both Brush-
Net and our Trans-Adapter are plug-and-play modules, they
can be applied together to other community models, en-
abling inpainting based on different models. As shown in
the Fig. 2, by using different community models, we can
achieve inpainting effects in various styles.
ControlNet Extension. As shown in Fig. 3, we demon-
strate that existing control models like ControlNet [5] can
be applied to our model for enriched functionality. Since
ControlNet does not provide a control model for SD-
Inpainting and only supports T2I generation, we apply
Trans-Adapter to BrushNet based on SD1.5 and then use
ControlNet (with Scribbles) to control image details. The
visualization results demonstrate that our method can ef-
fectively integrate ControlNet to control inpainting outputs,
allowing users to guide structure and details more precisely.

B. More Details of AEQ Assessment
Data Augmentation. We collect a high-quality transpar-
ent image dataset with clean alpha edges with 1,000 images
from the online PNG stock and matting data. Starting from
these transparent images, we simulate images with varying
degrees of edge quality to create a comprehensive training
set. To generate low-quality edges, we: (1) set regions with
an alpha value lower than 50 to a solid color, then perform
a dilation operation or a Gaussian blur operation on the al-
pha map. For the expanded region at the alpha map, we
multiply it with the mask generated by the fractal noise to
create a more realistic edge degradation effect. (2) com-
posite the images with different backgrounds (solid color
backgrounds + natural scenery backgrounds) and then pro-
cess these images using different segmentation and matting
methods [3, 4]. To quantify edge degradation, we compute
the difference between the original image’s alpha map and
its augmented counterpart, identifying regions with signifi-
cant discrepancies as low-quality edges. In this way, we can
train a segmentation network for alpha edge quality assess-
ment.
Training Loss. Since the edge quality assessment is a bi-
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“A man with a green hat and purple suit.”

Figure 1. Demonstration of color-stroke-based transparent image
editing. Users can draw on a transparent image and obtain an esti-
mated result based on their strokes and a provided text prompt.

Input SD1.5 Realistic Vision V6.0

“A beautiful girl with earrings and flowers on her head.”

Figure 2. While combining with BrushNet, our Trans-Adapter also
supports community models for inpainting.

nary classification task, we use a weighted cross-entropy
loss to address class imbalance, as low-quality edge pixels
are much fewer than high-quality ones. We assign a higher
weight to the low-quality class and further emphasize edge
regions using an edge mask Me.

Here, Iconcat denotes the input, F is the segmentation net-
work, y is the ground truth label map, and Me is the edge
mask. The loss is defined as:

L =
1

HW

HW∑
i=1

CE(F(Iconcat)i, yi, wyi) · (1+weMe) (1)

where wyi denotes the class weight (w0 for high-quality, w1

for low-quality, typically w0 as 1.0, w1 as 10.0), and we is
the edge weight (set to 4.0). This loss encourages the model
to focus more on low-quality edge regions during training.
AEQ Visualization. To demonstrate the effect of our pro-
posed AEQ, we visualize the estimated artifact maps for im-
ages in various styles. As shown in Fig. 4, AEQ effectively
highlights boundary artifacts across different image types,
indicating its strong generalization ability beyond specific
styles.
Network Architecture and Training Details. We adopt
a lightweight U-Net-based segmentation network compris-
ing three downsampling and three upsampling blocks. Each
block contains two convolutional layers with ReLU acti-
vation and batch normalization. The network takes an 8-



Table 1. Quantitative comparison of different LoRA training strategies under pure noise and blended noise settings.

Pure Noise Blended Noise
Method AS↑ LPIPS↓ CLIP Sim↑ AEQ↑ AS↑ LPIPS↓ CLIP Sim↑ AEQ↑
Ours 6.025 0.0591 26.870 0.9871 6.097 0.0408 27.030 0.9878
Frame-specific LoRA 5.992 0.0616 27.165 0.9855 6.089 0.0416 27.036 0.9863
Frozen LoRA 5.979 0.0637 27.043 0.9817 6.067 0.0471 27.005 0.9831
Frozen Frame-specific LoRA 5.985 0.0624 27.166 0.9856 6.082 0.0408 27.023 0.9859
w/o LoRA 5.982 0.0769 27.363 0.9863 6.091 0.0430 27.103 0.9868

"A pink heart-shaped wand."

“An astronaut's helmet”

Input User guidance Our result

Figure 3. Our approach can be directly combined with control
models like ControlNet [5] to enhance functionality. Users can
define a mask and outline the inpainting region to generate a trans-
parent image.

channel input and produces a 2-channel output, with hidden
channel dimensions of 64, 128, and 256, respectively. We
use the Adam optimizer with a learning rate of 1 × 10−4.
Training is performed on images with resolutions of 512 ×
512 and 1024× 1024, using a batch size of 4 and randomly
selecting a resolution for each batch. The network is trained
for 40,000 iterations.

C. More Details of Trans-Adapter

Stage 1: Alpha Map LoRA Training. To enable the gen-
eration of large areas of pure black and pure white in the
alpha map during inpainting, we adopt offset noise [2] with
a weight of 0.1 during LoRA training, as conventional fine-
tuning often struggles with such cases. The LoRA rank
is set to 16 and the LoRA alpha is set to 32. We use the
AdamW optimizer with an initial learning rate of 1× 10−4,
and train for 40,000 steps with a batch size of 4.
Stage 2: Joint Finetuning. In the joint finetuning stage,
we first load the pretrained LoRA weights, then zero-
initialize the spatial alignment module and cross-domain
self-attention module. These two modules are finetuned
with a learning rate of 5 × 10−5 using the AdamW opti-
mizer for 100,000 steps, with a batch size of 4. We conduct
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AEQ: 0.9911 AEQ: 0.9947 AEQ: 0.9418 AEQ: 0.9370

Figure 4. Estimated artifact map of our proposed AEQ for images
in different styles. (Zoom in for better visualization.)

an ablation study to compare different training strategies,
including frame-specific LoRA (training LoRA only on al-
pha images, affecting only the alpha channel), frozen LoRA
(training LoRA on both RGB and alpha images, then freez-
ing LoRA during stage 2), frozen frame-specific LoRA, and
training without LoRA (directly training stage 2 without
LoRA). As shown in Table 1, our full method achieves the
best overall performance in terms of AS, LPIPS, and AEQ
metrics under both pure noise and blended noise settings.
Our method achieves the best AEQ and LPIPS, validating
the effectiveness of the two-stage training. Removing or
freezing LoRA degrades AEQ and LPIPS, highlighting the
importance of LoRA-based alpha map pretraining.

D. Limitations

While our proposed method achieves strong performance
in transparent image inpainting and editing, several limita-
tions remain. First, our approach is based on SD1.5 and
SDXL, which are known to struggle with generating realis-
tic faces and hands during inpainting. This can result in arti-
facts when editing or restoring these regions, limiting appli-
cability in scenarios requiring high-fidelity human features.
Second, when the strength is set to 1.0 for SDXL-inpainting
0.1, the quality of the generated image degrades, which also
affects our RGBA inpainting results. This limitation origi-
nates from the base checkpoint. Finally, the alpha maps in
the MAGICK dataset [1] used for training are not perfect;
some regions, such as eyes, are translucent. As a result,
our model may also produce undesired translucent areas in
these regions during inpainting.
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