
CObL: Toward Zero-Shot Ordinal Layering without User Prompting

Supplementary Material

S1. Details of synthetic generation pipeline

In the Blender 3D modeling step, we place random 3D as-
sets from our library into the scene from front to back at
regular depth intervals. Each object’s horizontal location
is sampled randomly from all candidate locations within
the frame. Object locations that lead to total object oc-
clusion are rejected and resampled. Once placements are
determined, we extract all but one object and render shad-
ows, depth and an object mask. Creating and rendering
750 scenes takes approximately 3 hours on a NVIDIA 3080
GPU. We do not render any images using the material maps
associated with the objects in our library, which greatly re-
duces rendering time. But for visual comparison, Fig. S1
shows some examples of how those images would look,
compared to the generated ones in Fig. S2.

In the texture generation step, we use the publicly
available weights of pre-trained Controlnet-Depth con-
ditioned with a rendered depth map and the prompt
“a(n) {object label}, in a well lit and empty room,
{modifier string}”. Through trial and error and with help
from ChatGPT we settled on the modifier string “hyper-
realistic, photorealistic, 4k resolution, natural materials, re-
alistic floor, realistic wall, intricate details, realistic color
palette, HDR”. We run 20 steps of DDIM guidance with a
CFG scale of 7.5.

To generate diverse backgrounds, we once again query
ChatGPT to end up with 20 possible background prompts.
Example background prompts include:
• “A cozy indoor setting showcasing detailed floor textures,
{modifier string}”

• “An artistic interior scene with vibrant patterns on the
floor, {modifier string}”

• “A luxurious indoor environment with polished wooden
floors, {modifier string}”

We choose a background prompt at random, generate a
scene conditioned on the input depth map, and assign it to
the stack of object layers.

We then crop these outputs according to the masks to get
candidate objects. Before compositing them together, we
add all shadows to the background image x1 by darkening
pixels within the shadow regions. This update to x1 is given
by

x1 x1

NY

i=1

(1� si), (9)

where we approximate the effect of shadows as a com-
pounding decrease in background albedo. We then com-
posite the objects as explained in the main text, see Fig. S2

for examples of synthetic data.

S2. Architecture details

We augment the Stable Diffusion UNet architecture with an
image conditioning adapter and lateral attention blocks. We
run one instance of Stable Diffusion per object layer image,
tied together with lateral attention. Each UNet receives the
same input text condition, using the empty string (“”).

After every spatial attention layer in the UNet, we add
an input adapter corresponding to image and depth cues fol-
lowing [37]. The adapted cues are then passed equivalently
to every concurrent UNet. We scale the adapter weighting
by a learned parameter ↵in 2 [0, 1] such that the module is
entirely skipped when ↵in = 1.

Lateral attention is applied as a combination of a
Conv3D and inter-layer attention block, similar to the tem-
poral attention implementation in [6]. In our case, we ex-
tend the size of the 3D convolution kernel to N as we find
this helps propagate global information. Similar to the in-
put conditioning block, each lateral attention block includes
residual connection with a learned parameter ↵ 2 [0, 1],
such that the block is skipped when ↵ = 1.

We find ↵ has an additional benefit beyond scaling the
effect of each additional block. During inference, we can
temporarily set ↵,↵in = 1 to sample denoising estimates
from base Stable Diffusion. This allows us to apply prior
score matching without instantiating another model.

In total, CObL has 361 million trainable parameters,
about 28% of the size of Stable Diffusion 2.1. The distribu-
tion of added model parameters across the different neural
blocks are summarized in Sec. S2.

Network Added Parameters

SD-UNet 183M
RGB Image Adapter 77.4M
Depth Map Adapter 77.0M

Table S1. Parameter counts for each model component.

S3. Non-differentiable guidance steps

We employ three non-differentiable steps during inference
time at equally spaced times and we find they heuristically
improve output quality. We apply these updates every 5
sampling steps of inference.

Permute At inference timestep t, we take all predictions
(x̂1

0;t, . . . , x̂
N
0;t), exhaustively permute the ordering of these

predictions and compute the resulting composition of each
permutation. We then choose the permutation that mini-
mizes the compositional loss as described in Eq. (7). We
find that this improves the quality of object layers of pairs
of objects with very minor occlusions that may otherwise
be sorted incorrectly. In practice objects with incorrect as-
signments will change permutations only the first time this
operation is computed, but we repeat every 5 guidance steps
as we find it rarely catches misclassifications in later stages
of inference, with very little computational downside.

Erase As a non-differentiable update, we erase objects that
are almost fully occluded. An object is considered fully oc-
cluded if less than 1% of the object is visible in the compos-
ited scene. At higher scales of classifier-free guidance, the
latents are less constrained by the input scene and frequently
hallucinate totally unrelated objects. If a hallucination hap-
pens to be fully occluded by previous object layers, it will
not be penalized by either guidance loss. This update step
removes these objects by replacing the object layer with an
empty layer with zero alpha. In our experiments, we do not
find that object hallucinations unrelated to the object layers
occur outside of these cases.

Sort To maximize output quality, we ensure the object lay-
ers are generated in a similar ordinal structure to our train-
ing data. If our model generates layers without any objects,
we note this layer as empty. We move the empty layers to
the end of the layer stack so that for a scene with k non-
empty layers, the last N � k layers will be empty. We con-
sider a layer as empty if its alpha is nonzero for less than
0.1% of the frame.

S4. Detailed Limitations

Beyond the high-level limitations discussed in Sec. 7, we
find failure modes in CObL that can broadly be described
as “merging” or “splitting” failure modes.

Merging occurs when the an object layer consists of mul-
tiple objects. We find this occurs more frequently with as
the number of objects in an image increases. See the top
row of Fig. S4.

Another point of failure is when an object is split across
multiple layers, which generally occurs when the object
has multiple visually distinct parts. In our opinion, these
splits often create valid perceptual groupings. An example
is shown in the bottom row of Fig. S4, where the mushroom
object is split across two layers along its color discontinuity.

A possible reason these failures occur is due to our use
of Stable Diffusion priors, which are meant for generation
of large scale scenes and not objects in particular. If we
instead replaced Stable Diffusion with a model that has a
stronger single image prior this issue may be resolve. How-
ever, no such model currently exists that also contains the
strong prior of Stable Diffusion,.

In addition, we use an off-the-shelf mask network for
foreground segmentation during inference which leads to
similar issues with model bias. We find the segmentation
model can lead to incorrect mask assignments for com-
plex objects with many parts, which leads to incorrect scene
compositions. A mask network specifically trained for gen-
erating object layers may improve model performance on
these more complex images.

S5. Initialization and Non-convexity

We find that the problem of determining correct object lay-
ers is extremely non-convex. As diffusion-based generated
images, our model outputs are dependent on the sample of
noise used as the initial latent zT . While traditional diffu-
sion approaches can leverage this randomness to increase
output diversity, poor initialization for CObL latents can re-
sult in the failure modes discussed previously.

We find that this problem is more common in CObL than
in other diffusion models because the initialization has in-
creased total variance, as we run multiple diffusion mod-
els concurrently. However, we can leverage the exploratory
nature of random initializations for improved object layer
discovery.

On many real world scenes we qualitatively find that
even for the incredibly non-convex problem of occlusion-
ordered object layering we can arrive at a reasonable layer
stack within a handful of initializations. This motivates the
“best” and “average” comparisons in ??. In practice, this is
reflected by running CObL multiple times and choosing the
most likely output.

The impact of initialization is visualized in Fig. S6. We
show the effect of using the same initialization on scenes
that have similar but distinct object layer representations.
Even for scenes that have different numbers of total objects,
we can see the same failure modes and successes repeated
when using the same initialization. We also show that we
achieve different estimated object representations for the
scene depending on the initialization chosen. A similar re-
sult can be seen in Fig. S7.

Note that regardless of if a decomposition is “accurate”
according to human perception, the object layers will gen-
erally composite back to the original scene.

Figure S1. Renders of pre-diffusion textures. These renders are not used anywhere in the pipeline and are only shown for visualization
purposes. In practice we extract the canonical object descriptors of each object for use in our pipeline, shown in Fig. 2.

Figure S2. Random subset of our synthetic training dataset. Each object layer is placed on a gray background, and they can composite
from back to front to form their corresponding image.

Figure S3. Two configurations of object layers that result in equivalent scene compositions. Both configurations are considered valid
representations.

Figure S4. An illustration of the splitting and merging failure modes. (Top) A scene in which multiple disjoint objects are assigned the
same layer. (Bottom) A scene in which an object (the mushroom lamp) is incorrectly characterized as two objects.

Figure S5. Ground-truth object layers for a 6 object scene in TABLETOP.

Figure S6. Learned object layers for two trials (seperated by the dashed line) of the same five scenes. In each trial, the latent initialization
is kept consistent as the scenes change. Each scene varies from the previous by the addition of a single object.

Figure S7. Learned object layers for two trials (seperated by the dashed line) of the same five scenes. In each trial, the latent initialization
is kept consistent as the scenes change. Each scene varies from the previous by the addition of a single object.

Figure S8. The set of scenes in TABLETOP containing 6 objects.

	Introduction
	Related Work
	Methods
	Pipeline for Synthetic Tabletop Scenes
	Model Design and Training
	Guided Sampling

	Datasets
	Synthetic training and validation data
	T0.8ABLET0.8OP dataset

	Experiments
	Amodal Completion
	Visible Segmentation
	Qualitative Results

	Ablations
	Limitations and Discussion
	Details of synthetic generation pipeline
	Architecture details
	Non-differentiable guidance steps
	Detailed Limitations
	Initialization and Non-convexity

