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1. Dataset Detail

We present more details of our dataset, including the dataset

preparation and the distribution of the emotion values.

Detail of Dataset Preparation. We generate the train-

ing set using GPT-4 based on a collection of images with

human-annotated V-A values to ensure the content align-

ment of the generated neutral and emotional prompts.

The GPT-4 prompt for generating neutral prompts based

on a given image I is as follows:

Read the input image carefully. Generate a neu-

tral, concise prompt using a simple subject-verb-

object structure with minimal necessary adjec-

tives. Focus on the primary subject and its imme-

diate action or setting, without extra details. Keep

it straightforward and under 15 words.

The GPT-4 prompt for generating emotional prompts of

I is as follows:

Read the input image carefully. The input image’s

arousal value is {arousal} and its valence value

is {valence}. Both the values are in the range

of [-3, 3]. Based on the image, please gener-

ate a prompt for text-to-image generation models.

The prompt should be concisely, precisely, and

emotionally describing the image content. In par-

ticular, the prompt should precisely describe the

affective aspects of the image, i.e., color, light-

ing and shadows, composition, facial expressions

and body language (if people are in the image),

background and setting, texture and surface, con-

trast and tonality, symbols and icons, motion and

blur, content and theme. The prompt should be

no more than 75 words.

Distribution of Emotion Values. As shown in Figure 1,

we plot the distribution of Valence and Arousal of our col-

lected dataset. The extreme valence or arousal values are

rare in the training dataset.

Figure 1. Distribution of V-A.

2. Network Details
We provide additional details on the network implementa-

tion. The Emotion Injection Transformer (EIT) has a fea-

ture dimension of 768, with V/A features represented by

16 vectors of the same dimension. These features are in-

corporated into the text features via a cross-attention mech-

anism. The V-A encoder employs a two-layer MLP with

a 256-dimensional latent space, mapping V/A features to

a 768-dimensional representation. The Emotion Injection

Transformer (EIT) is implemented based on the GPT-2 ar-

chitecture, with the causal mask removed and transformer

blocks adapted into our Emotion Injection Block (EIB). For

Pout, we apply a linear transformation from 768 to 2048,

followed by Layer Normalization with an affine transfor-

mation to scale residual features effectively.

3. Experiment Details
We provide further details on the experimental evaluation,

covering baseline implementation, test set construction, and

the definition of evaluation metrics.

3.1. Comparative Baselines
We compared our method with four baselines and provided

details on their implementation in this section.

Cross Attention. Following IP-Adapter [7], we concate-

nate the V-feature ev , the A-feature ea and the prompt fea-

ture fn to form a conditional feature. This feature is fed into



the cross-attention mechanism of the SDXL UNet, enabling

emotion injection during image generation.

Time Embedding. In this baseline, emotion features (ev ,

ea) are directly embedded into the time embedding compo-

nent of the SDXL UNet. Specifically, the features are first

averaged and then added to the time embedding to incorpo-

rate emotional information into the generation process.

Textual Inversion. Using the Textual Inversion method

by Gal et al. [1], we embed emotions through learnable

token embeddings within structured prompts containing an

emotion placeholder token {E∗}. For example, the tem-

plate “a painting in the emotion of {E∗}” utilizes the em-

bedding for {E∗}, constructed by summing emotion fea-

tures ev and ea, to infuse the intended emotion.

GPT-4+SDXL. We leverage GPT-4 to modify input

prompts based on specified V-A values before passing them

to SDXL for image generation. The prompt for GPT-4 is:

Given a prompt {input prompt}, please gener-

ate the image corresponding to specific combina-

tions of arousal {arousal} and valence {valence}
values based on a standardized scale where both

arousal and valence range from -3 to 3. On this

scale, a valence value of -3 represents extreme

negativity (very unpleasant), while a value of 3

indicates extreme positivity (very pleasant). Like-

wise, an arousal value of -3 denotes extremely

low arousal (very calm or sleepy), whereas a

value of 3 signifies extremely high arousal (very

excited or tense). Provide the image description

alone, without any additional text or explanation.

3.2. Test Image Generation Procedure
We generated a total of 3,300 test images using 132 diverse

prompts, encompassing various human scenes, as well as

object scenes. For each prompt, we varied both V and A

across five values: -3, -1.5, 0, 1.5, and 3. This combination

of V and A values resulted in a total of 25 distinct images

per prompt. These images served as the basis for our com-

parative analysis across different metrics.

3.3. Evaluation Metrics
We employed the following metrics to assess the perfor-

mance of our method:

V/A-Error. This metric measures the absolute difference

between the predicted V/A values of generated images and

the input V/A values. Utilizing the pre-trained V/A predic-

tor from FindingEMO [4], the errors are calculated as:

V-Error =
1

n

n∑

i=1

|vi − v̂i| (1)

A-Error =
1

n

n∑

i=1

|ai − âi| (2)

where n is the number of images, vi/ai are the input V/A

values, and v̂i/âi are the predicted values. Lower errors

indicate closer alignment with the intended emotions.

CLIPScore. To evaluate the semantic alignment between

input prompts and generated images, we employed CLIP-

Score [2], defined as:

CLIPScore =
1

n

n∑

i=1

max(0, 100 cos(Ti, Ii)) (3)

where Ti and Ii represents the CLIP features of input text

prompt and the corresponding generated image. Higher

scores denote better correspondence between the textual

prompts and visual content.

CLIP-IQA. For assessing image quality without image

distribution, we utilized CLIP-IQA [5]. This metric lever-

ages a pre-trained CLIP model to evaluate the vision quality

of the images. We calculated the average CLIP-IQA score

over the generated images, with higher scores reflecting su-

perior image quality.

LPIPS-Continuous. We measured the continuity of im-

age transitions relative to changes in V/A values using the

Learned Perceptual Image Patch Similarity (LPIPS) metric

[9]. This was calculated as:

LPIPS-Continuous =
1

2
(LV + LA) (4)

LV =
1

M

∑

vi,ai

LPIPS(Ivi,ai , Ivi+h,ai) (5)

LA =
1

M

∑

vi,ai

LPIPS(Ivi,ai
, Ivi,ai+h) (6)

where Iv,a is the generated image with specific V/A val-

ues input, M is the number of comparisons, and h is the

increment in V/A values. Lower LPIPS-Continuous scores

indicate smoother transitions between images.

4. User study
We provide a more detailed description of the task and pro-

cedure of the user study.



Figure 2. Comparisons with EmoGen. EmoGen focuses solely on generating images based on emotional categories. However, it lacks the

capability to generate images based on subtle emotion change and does not support text-to-image generation. Our method addresses this

challenge by enabling control over both free-text prompt and continuous emotion.



(a) Playground v2.5 (b) VAR-CLIP

Figure 3. Comparison of generation results using the prompt “A boy is running in the forest.” across different model architectures. (a)

Playground v2.5 successfully generates images with our emotion-embedding network. (b) VAR-CLIP fails when integrating our method.

4.1. Task
We conducted a comprehensive user study with 20 col-

lege students to evaluate the effectiveness of our emo-

tional content generation approach. The study assessed four

key metrics: (1) emotion ranking accuracy, which as-

sessed how accurately participants ranked images based on

Arousal or Valence; (2) emotion rating accuracy, which

evaluated how closely participants’ ratings of arousal and

valence matched the expected values; (3) emotion con-
sistency, measuring the alignment of emotional changes

across images with the valence-arousal axis; and (4) emo-
tion smoothness, assessing the smoothness of emotional

transitions between consecutive images.

4.2. Procedure
Prior to the formal experiment, participants received train-

ing on the concepts of arousal and valence. They then com-

pleted a qualification task, ranking five images to demon-

strate their understanding. The main experiment consisted

of two studies via an online questionnaire.

Study I: Ranking and Rating Assessment. Participants

evaluated two collections of images specifically designed

to test perception of Arousal (A) and Valence (V) values.

Each collection contained 20 image sets (10 from our model

and 10 from the baseline), with each set containing five im-

ages generated using different A or V values. Participants

reordered randomly presented images based on perceived

emotional intensity and rated each image on a scale from -3

to 3. We employed Kendall’s τb correlation coefficient to

measure the alignment between participant rankings and in-

tended emotional values, with values ranging from -1 (com-

pletely reversed order) to 1 (identical order). Absolute error

was used to quantify rating accuracy.

Study II: Consistency and Smoothness Evaluation.
Participants assessed 20 image sets (10 per method), each

containing 25 images generated with V-A values gradually

transitioning from -3 to +3. Using a 5-point Likert scale,

participants rated: (1) how well emotional changes aligned

with the valence-arousal framework, and (2) the smooth-

ness of emotional transitions between images. We analyzed

these ratings through comparative mean and variance anal-

ysis between our method and the baseline.

5. Comparsion with EmoGen
We qualitatively compare our approach to EmoGen [6],

a state-of-the-art model for emotional image generation

that utilizes discrete emotion labels to control image out-

puts. For a fair comparison, we selected five emotion

categories—excitement, amusement, contentment, anger,

and sadness—and mapped them onto the Valence-Arousal

Cartesian space to generate images.

As illustrated in Figure 2, EmoGen generates images



solely based on single emotion labels without the ability

to incorporate specific content through text prompts. This

limitation results in a strong association between emotions

and particular semantic elements; for example, ”sadness”

often results in images featuring tombstones, while ”anger”

typically includes elements like fire. Such tight coupling

restricts the model’s flexibility and contextual adaptability.

In contrast, our model maintains a faithful representation

of the input text prompts, ensuring semantic accuracy while

flexibly modulating emotional expressions. By leveraging

a continuous emotion model within the V-A framework,

our method allows for more nuanced and context-sensitive

image generation. Even when restricted to discrete emo-

tions, our approach surpasses existing models by providing

greater control over both content and emotion.

6. Compatibility
Our framework embeds V-A values into textual fea-

tures while keeping the SDXL’s image generation mod-

ule fixed. By directly leveraging SDXL’s established tex-

tual feature space, our approach ensures compatibility with

SDXL-based architectures, allowing integration with vari-

ous SDXL derivatives (e.g. Playground v2.5 [3]).

Compatibility with SDXL Variants. We tested our

method with Playground v2.5 [3], an SDXL-based model

enhanced for aesthetic quality. Utilizing the pretrained

emotion-embedding network with α = 1, we successfully

embedded emotional information. As shown in Figure 3 (a),

our VA embedding effectively controls both emotion and

content. Additionally, Playground v2.5’s aesthetic opti-

mizations result in higher-quality generated images.

Incompatibility with non-SDXL Variants. We con-

ducted experiments with VAR-CLIP [8], a VAR-based text-

to-image model, to evaluate our method’s cross-architecture

compatibility. Unlike SDXL, which utilizes penultimate-

layer CLIP features, VAR-CLIP employs final-layer pooled

CLIP feature as textual feature. Despite our attempts to re-

train the emotion embedding network, the resulting gener-

ations fail to demonstrate effective emotion control (Fig-

ure 3 (b)). The results indicate that our V-A integration may

be incompatible with non-SDXL architectures.

7. Emotion Interpolation
We provide additional interpolation results between two

discrete emotions, Bored (V = -1.0, A = -2.1) and Tired (V

= -0.8, A = -2.075), in Figure 4. The result shows our

method can achieve continuous emotional transitions. Con-

tinuous emotion control could deliver richer expressivity for

film production or personalized content creation. In Fig-

ure 5, we interpolate between Amusement (V = 2.0, A =

Figure 4. Interpolation between Bored and Tired.

Figure 5. In-between state of Amusement and Angry.

1.0) and Anger (V = –2.0, A = 2.0) at the midpoint (V =

0, A = 1.5). The midpoint generated image exhibits an “in-

between” state.
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