WildSAT: Learning Satellite Image Representations from Wildlife Observations

Supplementary Material

A. Datasets
A.l. Training Data Distribution

Fig. A1 shows the spatial distribution of all data we collected across the globe. Most of the data are from United States and
Europe, corresponding to the wildlife observation data available from citizen science platforms [1, 2]. Despite this, we show
that models trained with WildSAT can still generalize to areas beyond the US and Europe, with segmentation improvements
even in areas like Africa (see Fig. A3).

Figure Al. Distribution of data points with satellite image, environmental covariates, and text. The alignment of different modalities
is guided by the geographic distribution of species.

A.2. Satellite Image Evaluation Datasets

Below we briefly describe the different satellite image classification datasets used for evaluation. For each of the datasets,
the splits for training, validation, and testing follow those provided from the respective sources.

UCM [78] is an image classification dataset that contains 21 classes with 100 each covering USA. Each image is 256256
with a resolution of 1 ft.

AID [76] is an image classification dataset that contains 30 class, each containing from 220 to 400 images from Google
Earth. Each image is 600x 600 with a resolution ranging from 0.5 to 8 m.

RESISC45 [8] is an image classification dataset that contains 45 classes with 700 images each, sourced from Google Earth.
An image is 256 x 256 with a resolution ranging from 0.2 to 30 m.

FMoW [9] is an image classification dataset that contains 63 classes from over 200 countries with a total of over 400k images
from QuickBird, GeoEye, and WorldView satellites. Images vary in size and resolution and each class has a different number
of images.

EuroSAT [28] is an image classification dataset that contains 10 classes of land use and land cover from Europe. Each image
is 64x64 with 10 m resolution. The dataset has 27k images with each class having a different number of images.
So2Sat20k [84] is an image classification dataset that contains 17 classes across different climate zones with global coverage.
The full dataset contains 400k pairs of Sentinel-1 and Sentinel-2 images. We use the GEO-Bench [38] version referred to as
“So02Sat20k” which contains 20k training samples.

BigEarthNet20k (BEN20k) [65] is a multi-label classification dataset with 43 classes. The full dataset is from 10 countries in
Europe with 590k Sentinel-2 images. We use the GEO-Bench [38] version “BEN20k” which contains 20k training samples.
Cashewlk [79] is a segmentation dataset with 7 categories mapping cashew plantations in Benin, Africa. It contains more
than 1k training examples of Sentinel-2 images. We use the available dataset in GEO-bench.

SACrop3k [3] is a segmentation dataset with 10 categories mapping crop types in South Africa. It contains 3k training
samples of Sentinel-2 images. We use the dataset provided in GEO-bench.

B. Additional Implementation Details

WildSAT Training Details. We train each base model on the WildSAT framework for 25 epochs using an Adam optimizer
with a learning rate of 1 x 107%, with an embedding dimension d = 512, and a batch size of 64. Random cropping,
resizing, jitter, and channel mixing are applied on satellite images as augmentations. Each satellite image is paired with a



UCM AID RESISC45 FMoW EuroSAT So2Sat20k BEN20k

Encoder [78] [76] [8] [9] [28] [84] [65]
Base +WS|[Base +WS |[Base +WS [Base +WS|[Base +WS|[Base +WS|Base +WS
ImageNet [14] 932 975|844 889 | 882 93.0| 438 514|945 973| 41.8 552|523 582
o MoCov3 [7] 942 95.1| 8.0 869 8.1 903 | 51.1 529|959 97.1| 476 566|516 57.0
E CLIP [59] 945 96.3| 86.3 88.0| 92.1 93.0| 51.5 528|922 97.1| 37.6 49.7| 47.1 59.1
& Prithvi-100M* [32] | 49.7 8551|359 712|426 735|192 305|673 935|215 451 33.6 506
»~  SatCLIP* [35] 382 503 | 374 464 | 404 462 190 20.1| 746 79.4 | 39.0 43.1| 27.0 28.7
Random weights 4.1 755 3.8 62.1 19 624 8.0 260 11.1 904 59 46.8 00 512
E ImageNet [14] 940 969 | 879 89.0| 904 918|476 50.7| 962 973 | 483 515 541 57.7
= SatlasNet [5] 89.6 912 743 81.2| 80.2 86.5| 31.8 44.6| 90.8 95.5| 36.4 53.1| 48.7 56.5
“? Random weights 21.0 81.7| 19.5 72.0| 199 749 | 12.1 334|599 92.7| 21.9 459 98 524
ImageNet [14] 942 936 87.8 86.7| 90.5 90.1| 473 46.0] 955 96.0| 36.1 46.6| 558 57.5
=4 MoCov3 [7] 92.0 935| 83.0 833 | 88.0 87.6| 502 457|935 951|272 425 466 538
© SatlasNet [5] 86.8 90.1| 72.5 794 | 81.8 854 | 347 424|935 954| 339 448 | 449 564
% SeCo [48] 86.1 88.8| 743 79.6| 80.2 86.3| 359 428 | 89.7 955| 39.9 46.0| 443 573
& SatCLIP* [35] 694 762 | 63.1 71.8| 702 788|362 399|834 929|454 449 | 423 482
Random weights 247 799 | 223 682|245 747 127 369 | 652 922 59 423|199 513
Overall average 68.8 86.1| 612 77.0| 653 81.0| 334 41.1| 80.2 93.8| 326 47.6| 385 53.1
Average w/o random 81.8 879 | 72.7 1794 | 77.8 83.5| 39.0 43.3| 88.9 943 | 37.9 483 | 457 534

Table Al. Results of linear probing different models on seven downstream datasets without (Base) and with (+WS) WildSAT fine-
tuning. Accuracy is reported for all datasets except BEN20k that reports micro F1 score. Base refers to the original models specified as the
encoder and +WS refers to the same models further trained on the species observation data. Fine-tuning models with species observation
show significant improvement over the base models. Both Prithvi-100M and SatCLIP are pre-trained with multispectral images, but for
consistency across downstream datasets and models, only RGB bands are used. We include results on multispectral images in Tab. A4.

wildlife observation location for positive samples. For each of these pairs, a section of text is randomly sampled from the
Wikipedia [4] page of the species. A satellite image of the same location, but from a different time, is also randomly sampled
for image augmentation. Negative samples are randomly selected from other species and locations that do not correspond to
the observed wildlife locations. For multiple species that are found in the same location, multiple texts are associated with
the same location. For the same species present in different locations, the text for each location is randomly sampled from the
same Wikipedia page (i.e. each location would correspond to a random section on the same Wikipedia page). Downstream
tasks follow the train/val/test split provided in each of the datasets. Training takes an average of 8 hours on 2 NVIDIA L40S.

Satellite Image Filtering. All satellite images are from Sentinel-2A and Sentinel-2B. We follow the same data collection
procedure from SatlasPretrain [5], where satellite images are downloaded from EU’s Sentinel Data [18]. Each image is
512x512 pixels with a 10 m resolution per pixel. Only images that are tagged with significantly less cloud cover from [5] are
used. In addition, we only use satellite images that were taken in the same time range as the wildlife observation data (from
2017 to 2021). This is done since we do not use the exact observation date and time as an input to the model; we consider
all observations throughout the time range. At the same time, the text descriptions we use also refer to all types of habitats
regardless of time of year.

Multi-spectral Baselines. Prithvi-100M [32] and SatCLIP [35] originally use multi-spectral data in their pre-training.
However, for general applicability and easy comparisons with other models, we only use RGB bands in Table 1. When
WildSAT is applied to these models, we only fine-tune with the three bands, and set other bands to zero. At the same time,
when applying both the base models and WildSAT fine-tuned models on downstream satellite image datasets, we also set
other bands to zero. We also explore using multiple bands as inputs in Tab. A4, and discuss the results in the next section. In
this case, when a band used by a model is not available in the dataset, we set the values of the band to zero. Otherwise, we
use all the bands available.



UCM AID RESISC45 FMoW EuroSAT  So2Sat20k  BEN20k
Encoder [78] [76] [8] [9] [28] [84] [65]
Base +WS[Base +WS|Base +WS[Base +WS |Base +WS][Base +WS|Base +WS

ResNet50 ImageNetlK V2 [60]| 94.2 93.6| 87.8 86.7| 90.5 90.1| 473 46.0| 955 96.0| 36.1 46.6| 55.8 57.5
ResNet50 ImageNetlK V1 [14]]| 92.5 93.5| 904 88.8| 85.1 84.7|40.7 37.0| 88.0 949 38.8 48.2| 46.7 53.7
ViT-L/16 SatMAE [13] 23.8 86.1|25.1 70.6|26.1 746|139 334|483 945|156 48.6| 184 51.0

Table A2. Additional linear probing results on satellite image classification datasets. Accuracy is reported for all datasets except
BEN20k that reports micro F1 score. ‘Base’ refers to the original models specified as the encoder and ‘+WS’ refers to the same models
further trained with WildSAT. Consistent with results thus far, fine-tuning models with species observation generally show significant
improvement over the base models.

UCM AID RESISC45 FMoW  EuroSAT So2Sat20k BEN20k

(781  [76] (8] (9] (28] [84] [65]
TaxaBind [63] 80.5 677 72.6 31.2 85.2 33.9 47.6
GRAFT [47] 81.1  76.1 83.3 39.3 90.9 36.6 48.0
RemoteCLIP [41] | 96.1  86.1 90.9 45.7 93.3 355 49.4
CLIP [59] 945 863 92.1 51.5 922 37.6 47.1
WildSAT (Ours) ‘ 96.3 88.0 93.0 52.8 97.1 49.7 59.1

Table A3. Linear probing results on downstream satellite classification datasets using models with CLIP as the base. Results are
reported as accuracy, except for BEN20k which uses micro F1. TaxaBind, GRAFT, and RemoteCLIP fine-tune a CLIP backbone and use
additional modalities such as text, ground images, and satellite images for cross-modal tasks. WildSAT outperforms both the standard
CLIP and the previous methods that also fine-tune on CLIP.

So2Sat20k BEN20k
Encoder [84] [65]
Base +WS|[Base +WS

ViT-B/16 Prithvi-100M [32] | 28.7 50.1| 34.4 53.9

ViT-B/16 SatCLIP [35] 48.8 488|334 36.1
ResNet50 SatCLIP [35] 458 463|467 543
Average | 41.1 48.4]382 48.1

Table A4. Linear probing results on models using multispectral images. Accuracy is reported for So2Sat20k and micro F1 score for
BEN20k. ‘Base’ refers to the original models specified as the encoder and ‘+WS’ refers to the same models further trained with WildSAT.
We see improved base model performance with using more bands (compared to using only RGB), and show that the addition of WildSAT
further improves performance even with multispectral models and datasets.

C. Additional Results
C.1. Satellite Image Classification

Linear Probing results. Tab. Al shows the raw numbers from which Fig. 3 was generated.

ImageNet V1 results. Tab. A2 shows results on the ImageNet V1 base model that previous works have used [46, 48].
The results in Table 1 in the main paper include a base model using ImageNet V2 (also included in Tab. A2 for reference)
which has generally better performance across the downstream satellite image datasets. Tab. A2 additionally shows results
on SatMAE [13], a ViT-L/16 model that was pre-trained with the MAE framework on satellite images. Similar to previous
results, WildSAT improves performance across the seven satellite image classification datasets evaluated.

Multi-spectral results. Tab. A4 shows additional results when using multispectral images as input to the models that sup-
port this capability. Prithvi-100M and SatCLIP accept multiple bands as input, while So2Sat20k and BEN20k are datasets on
GEO-bench that contain multiple bands. We find that WildSAT also improves on these multispectral models, demonstrating
the broad applicability of our method.



ImageNet (ViT-B/16) + WildSAT
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Figure A2. Confusion matrices comparing the predictions of an ImageNet base model and a WildSAT fine-tuned model on the
So02Sat20k dataset [84]. Both models use a ViT-B/16 architecture. Each matrix displays the result on the provided So2Sat20k test set in
GEO-Bench [38].

EuroSAT [28] So02Sat20k [84]
AnnualCrop Sealake Highway | Water Low plants Heavy industry
TaxaBind [63] 1.3 20.4 3.7 0.0 0.0 0.0
GRAFT [47] 333 72.1 55.6 16.4 0.0 13.4
RemoteCLIP [41] 19.6 159 53 36.5 59 0.0
WildSAT (Ours) | 46.5 87.4 04 | 60.9 10.4 0.0

Table AS. Zero-shot image classification F1 score on different classes of EuroSAT and So2Sat20k with CLIP-based models. Since
WildSAT is geared towards habitat-related classes, the coverage of zero-shot classification is less effective beyond natural concepts. Wild-
SAT does well on natural classes like ‘SealLake’ and “Water’, but struggles on anthropogenic classes like ‘Highway’ and ‘Heavy industry’.

WildSAT outperforms CLIP-based models. Tab. A3 displays the result for each evaluation dataset across different CLIP-
based models. All models in the table starts with a pre-trained CLIP ViT-B/16 model [59]. TaxaBind[63] and GRAFT [47]
use additional modalities such as ground images, text, and audio to improve model performance on cross-modal tasks such
as zero-shot image-text retrieval. However, we show that while these same models do well on zero-shot tasks, they tend to
“forget” some of the original image representations, with linear probing performance on downstream datasets lower than that
of the original CLIP model. With WildSAT applied to CLIP, we show that we can outperform not only other CLIP-based
models, i.e. GRAFT and TaxaBind, but also outperform the standard CLIP model across all the datasets in the evaluation.
We hypothesize we can prevent “forgetting” by applying parameter efficient fine-tuning on out-of-domain pre-trained models
such as CLIP. We further show this in Tab. A9.

WildSAT reduces errors on habitat-related classes. Fig. A2 shows the confusion matrix of a sample result on the
So02Sat20k test set. The matrix on the left shows the result of a base ImageNet pre-trained model, and the right matrix
shows the result when WildSAT is applied. We show that WildSAT improvements on the true positive counts along the
diagonal are largely due to fewer false positives on habitat-related classes. Looking at the second row of both matrices (class
‘Sparsely built’), the true positive count doubled from 24 to 48. A lot of this improvement comes from less false positives
on ‘Scattered trees’ (from 7 false positives to 0), ‘Bare rock or paves’ (from 3 false positives to 0), and ‘Dense trees’ (from 1
false positive to 0)—all of which are habitat-related attributes. Similar trends can be observed on other classes as well such
as in ‘Dense Trees’ and ‘Low Plants’ where we see higher true positive counts with WildSAT.



Cashew1k [79] SAcrop3k [3]
Accuracy IoU Accuracy TIoU

‘ Base +WS Base +WS Base +WS Base +WS

ImageNet [14] | 91.6% 91.9% 703% 70.6% | 60.7% 623% 243% 25.0%
MoCov3 [7] 924% 932% 71.4% 7133% | 60.7% 60.8% 229% 24.9%

SeCo [48] 86.7% 932% 62.6% 733% | 592% 59.4% 223% 22.8%
SatlasNet [5] 825% 918% 552% T71.0% | 56.1% 57.1% 19.4% 20.5%
Random 69.8% 929% 401% 72.6% | 547% 563% 18.0% 20.3%

‘84.6% 92.6% 599% T722% | 583% 592% 21.4% 22.7%

Table A6. Downstream satellite image segmentation results. WildSAT can also improve on satellite segmentation tasks across different
models and datasets. All models use the frozen pre-trained encoders with a convolutional-based decoder trained for each of the downstream
tasks. ‘Base’ refers to the original models specified as the encoder and ‘“+WS’ refers to the same models further trained on the species

observation data.

Cashewlk Segmentation Results SAcrop3k Segmentation Results
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Figure A3. Visualization of segmentation results using SatlasNet without and with WildSAT. WildSAT can more accurately iden-
tify classes ‘stable cashew plantations’ and ‘stable cropland/others’ in Cashewlk [79], and improve on the identification of ‘Rye’ and
‘Meadows’ in SAcrop3k [3]. Some areas of improvement are highlighted in red boxes.

WildSAT is effective on zero-shot classification of habitat-related classes. Tab. A5 shows zero-shot image classification
results on classes from EuroSAT and So2Sat20k. WildSAT is geared towards classes related to nature and animal habitats,
and thus see improvements in those classes (e.g. ‘AnnualCrop’, ‘SealLake’, “Water’, ‘Low plants’). While WildSAT underper-
forms on anthropogenic classes (e.g. ‘Highway’, ‘Heavy industry’) compared to models like TaxaBind and GRAFT, future
work can integrate wildlife data and anthropogenic labels to create a more comprehensive and balanced representations.

Satellite image segmentation results. Tab. A6 shows results of applying different ResNet50 encoders on satellite image
segmentation. For each encoder, a convolution-based decoder is added while adopting the U-Net architecture [61]. To
accurately evaluate the features learned with and without WildSAT, we freeze the encoder and fine-tune only the decoder
on the downstream dataset. Tab. A6 shows that WildSAT can provide rich representations leading to better segmentation
performance. Fig. A3 visualizes how WildSAT improves the segmentation outputs on Cashewlk and SAcrop3k. Further
training on WildSAT leads to more accurate differentiation between the crop types.

C.2. Additional Ablations

WildSAT improves models by covering model-specific gaps. Tab. A7 displays an ablation study conducted on two dif-
ferent types of models: a ResNet50 SeCo [48] model and a ViT-B/16 ImageNet [14] model. SeCo is pre-trained with a
contrastive objective on time augmented satellite images (i.e. satellite images from the same location, but from different sea-
sons). This objective is similar to the Liy, term (Eqn. 1 in the main paper) in the loss function of our WildSAT framework.
Thus, we see from Tab. A7, that simply adding the image augmentation term (‘img-a’) only slightly improves the average
performance across the downstream datasets (from 70.1% to 71.8%). This small improvement could be attributed to the
additional examples related to habitats that are possibly not as well-represented in the SeCo dataset. However, if we add
other modalities such as text and location (in addition to the satellite image augmentation), we see a larger improvement with



ResNet50 SeCo [48]

Loss Terms loc env text img-a Ucm AID RESISC45  So2Sat20k Average
& [78] [76] [8] [84] g
Base Model \ | 86.1% 74.3% 80.2% 39.9% | 70.1%
Lioc v 84.0% 76.2% 81.1% 43.5% 71.2%
Lioc v Y 84.1% 76.3% 83.0% 38.7% 70.5%
Lixt v 82.8% 74.4% 79.6% 39.5% 69.1%
Lt + Lioe v v 84.3% 72.7% 78.5% 41.3% 69.2%
Lixt + Lioc vV 84.0% 75.8% 81.8% 40.0% 70.4%
Limg v 83.3% 75.0% 82.9% 46.0% 71.8%
Limg + Lioc v v 85.7% 77.9% 86.7% 46.2% 74.2%
Limg + Lioc v Y v 85.3% 77.1% 85.7% 48.2% 74.0%
Limg + Lt v v 86.6% 77.0% 84.7% 48.6% 74.2%
Limg + Lixe + Lioc | v v v 86.8% 78.1% 86.0% 49.0% 75.0%
Limg + Loa+Lioc | v vV vV 88.8% 79.6% 86.3% 46.0% 75.2%
ViT-B/16 ImageNet [14]
Loss Terms loc env text img-a UcM AID RESISC45  So2Sat20k Average
& [78] [76] 8] [84] g
Base Model \ | 932% 84.4% 88.2% 41.8% | 76.9%
Lioc v 95.2% 85.8% 89.3% 43.4% 78.4%
Lioe v 94.7% 86.2% 88.8% 44.2% 78.5%
L v 96.1% 85.1% 88.9% 42.2% 78.1%
Lixt + Lioc v v 95.6% 86.5% 89.6% 39.6% 77.8%
Lt + Lioc v v v 95.1% 86.2% 89.7% 45.0% 79.0%
Limg v 97.1% 87.1% 91.5% 53.7% 82.3%
Limg + Lioc v v 97.1% 88.1% 91.7% 54.0% 82.7%
Limg + Lioc v v 96.8% 88.6% 92.1% 52.7% 82.6%
Limg + Loxt v v 96.9% 87.7% 92.0% 54.3% 82.7%
Limg + Lixi + Lioc | v v v 97.1% 87.9% 91.9% 53.4% 82.6%
Limg + Lox+Lioc | v vV V V 97.5% 88.9% 93.0% 55.2% 83.6%

Table A7. Ablation of the various components of the WildSAT framework. We ablate on SeCo [48], a self-supervised pre-training
method that applies contrastive learning on seasonal augmentations of images, and on ImageNet [14], a supervised pre-training on Ima-
geNet. Through the different modalities in WildSAT, we can improve model-specific gaps.

an average performance of 74.2% and 75.2%, respectively. In contrast, an ImageNet pre-trained model benefits from satellite
image augmentations (Ling Or ‘img-a’) since it was trained on a different domain. Simply adding the image augmentation
term improved average performance from 76.9% to 82.3%. Further adding other modalities such as text and location also
pushes the performance higher to 83.6%. These results support our hypothesis that WildSAT can complement and further
improve different architectures by leveraging the different modalities.

Location encoder ablation. Tab. A8 shows an ablation study conducted on our choice of the location encoder. We use a
ResNet50 SeCo encoder as the base model, and report accuracy on downstream classification datasets. All rows in the table
use WildSAT with satellite images and text (Limg + L), Which are matched based on the location—i.e. location is implicitly
used in all the results, and we ablate which encoder to use for explicitly including location as an input. We replace the location
encoder in our WildSAT framework with one of the following: no model (i.e. use the position encoded latitude and longitude
and/or the raw environmental covariates vector), SatCLIP [35], or SINR [12]. We use the SatCLIP pre-trained location
encoder that takes the latitude and longitude as an input. For SINR, we explore the two variants of using (1) just the location
(‘loc’) or (2) both the location (‘loc’) and environmental covariates (‘env’). We find that the best average performance uses
SINR with both the location and environmental covariates.



ResNet50 SeCo [48]

No Model | SatCLIP | SINR UCM AID RESISC45  So02Sat20k Average
loc env loc loc env [78] [76] [8] [84] &
86.6% 77.0% 84.7% 48.6% ‘ 74.2%

v 87.3% 78.1% 85.5% 48.3% 74.8%
v 86.3% 76.3% 84.9% 47.2% 73.7%

v v 87.0% 77.4% 85.1% 48.4% 74.5%
v 86.0% 78.2% 85.5% 50.0% 74.9%

v 86.8% 78.1% 86.0% 49.0% 75.0%

v v 88.8% 79.6% 86.3% 46.0% 75.2%

Table A8. Ablation of the location encoder. These runs assume both the text (L) and the image augmentation(Ling) are already part of
the model, which implicitly uses location (since images and text are matched based on location). We ablate the explicit addition of location
as an input through different location encoders. We explore using no model (i.e. directly just using the latitude/longitude or environmental
covariates), SatCLIP [35], and SINR [12]. The last row of the table corresponds to our WildSAT setup.

Encoder PEFT UCM AID RESISC45 FMoW EuroSAT So2Sat20k BEN20k
(781 [76] (8] (] (28] [84] [65]
ResNet50 ImageNet1K [60] 913% 82.0% 85.6% 421%  95.0% 47.0% 56.1%
ResNet50 ImageNetlK [60] v | 93.6% 86.7% 90.1% 46.0%  96.0% 46.6% 57.5%
ViT-B/16  CLIP [59] 82.1% 71.0% 75.3% 349%  93.4% 50.4% 49.0%
ViT-B/16  CLIP [59] v 1963% 88.0% 93.0% 53.6% 97.1% 49.7% 59.1%
ResNet50 SatlasNet [5] 90.1% 79.4% 85.4% 42.4%  95.4% 44.8% 56.4%
ResNet50 SatlasNet [5] v |86.9% 76.8% 82.0% 357%  94.1% 41.6% 51.6%
ResNet50 SeCo [48] 88.8% 79.6% 86.3% 428%  95.5% 46.0% 57.3%
ResNet50 SeCo [48] v |86.7% 77.3% 83.2% 373%  94.0% 44.4% 54.8%

Table A9. Ablation of parameter efficient fine-tuning (PEFT) when applied with WildSAT. Models pre-trained on out-of-domain
datasets (e.g. ImageNet, CLIP) that are fine-tuned with PEFT can perform better on downstream tasks by preserving original representations
from the base model. In contrast, models pre-trained on in-domain datasets (e.g. SatlasNet, SeCo) show limited improvement from PEFT
since the fine-tuning is in the same domain as the pre-training (i.e. satellite images)—fine-tuning all layers has better performance.

Parameter efficient fine-tuning (PEFT) preserves out-of-domain pre-training representations. Tab. A9 displays the
effect of fine-tuning all parameters of a given base model compared to fine-tuning specific layers (i.e. applying PEFT). We
compare the effect on out-of-domain pre-trained models (e.g. ImageNet [60], CLIP [59]), and in-domain pre-trained models
(e.g. SatlasNet [5], SeCo [48]). We find that out-of-domain pre-trained models have better downstream performance by
applying scale and shift fine-tuning [21, 40], or by applying DoRa [49]. By fine-tuning specific layers, the models retain
some of the original representations learned from the pre-training (i.e. ImageNet or CLIP) so that performance does not
deteriorate compared to the base models. This has a significant impact on large models such as ViT, since fine-tuning all
weights alters many parameters and risks shifting them in suboptimal directions. On the other hand, while applying PEFT for
in-domain pre-trained models SatlasNet [5] and SeCo [48] improves performance compared to the base model, we see better
performance when directly fine-tuning all the layers. This may be because the model has already undergone pre-training on
satellite images, making additional pre-training on similar data from WildSAT result in a non-disruptive shift.

C.3. Zero-shot Retrieval

In Fig. A4, we display more zero-shot retrieval examples. The first row of examples demonstrates retrieval of general
landscapes such as ‘rainforest” or ‘mountains’. The second row demonstrates retrieval of wildlife habitats. We enumerate
each of the wildlife examples below including their expected habitats. All the enumerated habitats are consistent with the
retrieved satellite images.

Description of the wildlife examples from the second set of rows in Fig. A4:

1. ‘house sparrow’ is a small, common bird typically found in urban areas.

2. ‘albatross’ is a large bird commonly found in the sea.

3. ‘sandpiper’ is a small bird that dwells in the coast.

4. ‘horned lark’ is a bird species found in open land such as on farmland, on prairies, and in deserts.
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‘cactus’ is a type of plant commonly found in the desert.
‘rock pigeon’ is a bird commonly found in urban and residential areas.
‘virginia rail’ is a bird found in freshwater and brackish marshes, and sometimes salt marshes in winter.

‘american marten’ is a North American mammal that is found in forests, and broadly distributed in North America from

Alaska and Canada to New York.

‘q rainforest HQmountains ‘ ‘q savanna HQ high altitude HQ coast HQ urban Hngpsum dunes ‘ q aquatic

S i :
‘q house sparrow ‘ ‘Q albatross ‘ ‘Q sandpiper ‘ ‘q horned lark ‘ ‘Q cactus ‘ ‘Q rock pigeon ‘ ‘q virginia rail ‘ ‘Qamerican marten

Figure A4. Additional zero-shot results for text-based satellite image retrieval.
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