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1. Additional Experimental Details

Image Generation For the image generation task, we con-
sider the Dreambooth [6] dataset. This dataset consists of
30 image sets from 15 different categories in which each
category consists of 4 to 6 images per concept. The subjects
primarily fall into two types: living or non-living. Based on
this distinction, 25 prompts are used for evaluation across
four different seeds. For the training, we used the default
learning rate of 1e-4 (AdamW optimizer), with batch size
of 1, with prior preservation loss weight of 0.1. The LoRA
rank is set to 128 with α = 256 and is applied to atten-
tion layers of the text encoder, as well as to both the self-
attention and cross-attention layers of the UNet of Stable
Diffusion V1.5. LoRA is attached to the key, query, value,
and output projection matrices in the attention layers of both
the UNet and the text encoder. Training is conducted over
1000 iterations per concept.
Image Classification For image classification, we fine-tune
the DINOv2-g/14 model [4] using VTAB-1K [10], which
consists of 19 classification tasks spanning natural, special-
ized, and structured domains. In our experiments, we se-
lect 14 tasks from VTAB-1K to assess fine-tuning perfor-
mance. To incorporate AdaLoRA, PiSSA, OLoRA, EVA,
DoRA, and CoRDA, we adapt their implementations from
the peft library. The classifier head is initialized with
weights drawn from a normal distribution (σ = 2e−5),
while biases are set to zero. Throughout fine-tuning, we
update the classification head, LoRA matrices, and biases.
LoRA matrices are applied to most linear layers, especially
query, key, and value components of attention layers, as
well as the dense and fully connected layers. Input images
are rescaled to 224 × 224 using bicubic interpolation and
normalized according to ImageNet’s per-channel mean and
variance. Fine-tuning is performed with bfloat16 precision,
using AdamW (weight decay = 0.05) for 30 epochs. The
learning rate follows a cosine decay schedule, with a lin-
ear warm-up phase spanning the first three epochs. For full
fine-tuning, a layer-wise learning rate decay of 0.75 is ap-
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plied.

Image Understanding For image understanding, we con-
sider Amazon Product Description dataset (APD) [7] for
product marketing. The APD dataset is a large-scale re-
source designed for product marketing and e-commerce ap-
plications, encompassing both structured metadata and un-
structured textual descriptions across a wide range of prod-
uct categories. For fine-tuning, we use the GLM-Edge
model [9], incorporating LoRA-based adaptation with a
rank of 32 and α = 64, optimizing it to generate domain-
specific product descriptions. The attachment points are
done at query, key and value locations of all attention lay-
ers in the vision encoder as well as the language model.
Additionally, we utilize the myVLM dataset [1], which is
tailored for personalized vision-language modeling, focus-
ing on concept-based captioning where descriptions are tai-
lored to user-defined preferences and contexts. The dataset
comprises manually annotated image-text pairs, ensuring
high-quality supervision for customized caption generation
and multimodal retrieval tasks. We fine-tune LLAVA-v1.5-
7B [2], a vision-language model, applying adapters with a
rank of 128 and α = 256 to the self-attention layers in the
visual encoder and both the self-attention and feed-forward
network (FFN) layers in the language model. For the atten-
tion blocks, LoRA is attached at the query, key and value
locations. In both the models, training is conducted using
AdamW optimizer with a learning rate of 2e-4 and batch
size of 8. For the both tasks, fine-tuning is performed over
20 epochs using all available samples. Fig. 1 shows the in-
put prompts used in the datasets.

Language Understanding For language understanding, we
consider the popular GLUE Benchmark [8]. This bench-
mark consists of eight downstream tasks, such as natural
language inference, or sentiment analyses. For the base
model, we use the large version of Roberta [3]. The hy-
perparameters used are the same as EVA [5]. For the eval-
uation metrics, we report accuracy for all tasks except for
CoLA and STS-B, where we report Matthew’s correlation
and Pearson’s correlation, respectively.



Figure 1. Figure showing the input prompts used in the myVLM
and Amazon Product Description datasets.

2. Gradient Analysis

Our proposed initialization method requires initialization of
Ai, the down matrices and Bi, the up matrices separately.
The gradients of Ai and Bi with respect to the task loss L
is given as ∂L

∂Ai = BiT
(
∂L
∂Y

)
XiT

tar, where Y is the output
of the LoRA layer. Similarly, the gradient of the task loss
L with respect to Bi is given as ∂L

∂Bi =
(
∂L
∂Y

)
XiT

tarA
iT .

From the expression, it is clear that the initial gradients
would depend on the initial values of Ai and Bi. For ran-
dom initialization, ∂L

∂Ai would be zero as Bi is initialized
to 0. This can slow down the convergence. For data-driven
initialization like EVA, Ai is initialized from data and it is
likely to assist ∂L

∂Bi in the convergence. However, still Bi is
initialized to 0 and hence the initial gradients of ∂L

∂Ai would
be zero and hence affecting convergence. For our proposed
method, the initial values of Bi and Ai are non-zero and
both depend on the principal components of the input acti-
vations Xi

tar. Consequently, both of the gradients have a
dependency on Xi

tar beyond first order and hence we ex-
pect faster convergence compared to EVA.

3. Competitive Low Rank Adaptors as Con-
straints

The first example of Native LoRA is as follows:
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PISSA can be expressed as:
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OLORA can be expressed as:
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CORDA can be expressed as:
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EVA can be expressed as:

F1(X
i
src,X

i
tar,W

i
src,W

i
tar) = 0 (18)

Ai = V i[: r :] where (19)

U i[:: r],Si[: r],V i[: r :] = SVD(Xi
tar) (20)

4. Additional Experiments
4.1. Image generation
Effect of different ranks We also study how different
ranks affect quantitative performance of the model as shown
in Table 1. We have originally used the default rank of
128, on which our proposed method and their variations
CNTLoRA-X, CNTLoRA-S, CNTLoRA-Sh produced bet-
ter DINO scores than competitive methods. The pattern
holds true even for lower ranks of 64 and 32. In fact,
CNTLoRA-X at rank 64 produces better DINO scores than
what LoRA and EVA produces at rank of 128.
Effect of different learning rates We also study how dif-
ferent learning rates affect quantitative performance of the
model as shown in Table 2. We have originally used
the default learning rate of 1e-4, on which our proposed
method and their variations CNTLoRA-X, CNTLoRA-S,
CNTLoRA-Sh produce better DINO scores than compet-
itive methods. The pattern holds true even for different
learning rates of 1e-3 and 1e-5. For both these learning rates



Figure 2. Plot showing how the rank distribution takes place for the dog class in the Dreambooth dataset.

Table 1. Final quantitative results (DINO) (1000 iterations) of dif-
ferent methods on the Dreambooth dataset using SD 1.5 for differ-
ent ranks. Higher (↑) is better.

Method 128 64 32

LoRA 62.74 59.07 56.62
EVA 62.24 60.93 57.41

CNTLoRA-X 64.63 62.98 59.09
CNTLoRA-S 63.91 62.25 58.23
CNTLoRA-Sh 62.95 61.02 57.69

we see a general drop in performance compared to that at
1e-3. The reason for drop at 1e-5 is because of slower learn-
ing rate and not enough iterations to converge. The reason
for drop in learning rate at 1e-3 is due to instability in the
fine-tuning procedure.

Table 2. Final quantitative results (DINO) (1000 iterations) of dif-
ferent methods on the Dreambooth dataset using SD 1.5 for differ-
ent learning rates.

Method 1e-4 1e-3 1e-5

LoRA 62.74 60.51 58.42
EVA 62.24 60.26 59.01

CNTLoRA-X 64.63 61.98 60.05
CNTLoRA-S 63.91 61.92 60.22
CNTLoRA-Sh 62.95 60.81 59.10

Rank distribution in VAS In our proposed Variable
Adapter Structure (VAS) framework, we have variable
ranks across different attachment points. In Fig. 2, we visu-
alize this variable rank allocation across attachment points
for both the UNet and Text Encoder when finetuned on the

dog class of the Dreambooth dataset. For the UNet case, we
see that the rank is distributed more or less randomly across
all attachment points. For the ”Out” attachment point in the
attention block, we see lower rank allocation in deeper lay-
ers suggesting lesser importance of LoRA modules in that
region. For the text encoder case, we see higher rank al-
location in the initial layers while lower rank allocation in
the deeper layers of the text encoder. This suggests lesser
importance of LoRA modules in the deeper layer.

Table 3. Final quantitative results (1000 iterations) of different
variations of our method on the Dreambooth dataset using SD 1.5.

Method DINO (↑) CLIP-I (↑) CLIP-T (↑)

CNTLoRA-X-QR 65.29 78.63 27.36
CNTLoRA-X-0.75 65.78 81.34 24.91
CNTLoRA-X-0.25 63.26 79.71 27.01
CNTLoRA-X-0.1 62.41 78.23 28.34
CNTLoRA-Sh-Norm. 61.2 79.34 28.10
CNTLoRA-Sh-10 62.13 79.92 28.13
CNTLoRA-Sh-0.1 62.42 79.96 27.95

Additional Variations In Table 3, we consider different
variations of CNTLoRA. CNTLoRA-X-QR uses QR de-
composition instead of SVD for allocating the up and down
matrices. CNTLoRA-X-p uses fractional allocation of p
when splitting the singular matrix S and allocating it to
up and down matrices. By default, we use p = 0.5. Fur-
thermore, we consider different variations of CNTLoRA-
Sh where the constant C is varied from the default value of
identity: (a) Norm where C is normally distributed. (b) 10



Figure 3. Plot showing how the generation evolves for different initialization methods on the Dreambooth dataset for the duck class. The
prompts from left to right are (a) A S* toy floating on top of water. (b) A S* toy in the snow. (c) A S* toy with a city in the background.

Figure 4. Plot showing how the generation evolves for different initialization methods on the Dreambooth dataset for the teapot class. The
prompts from left to right are (a) A S* teapot with a wheat field in the background. (b) A S* teapot with the Eiffel tower in the background.
(c) A S* teapot on a cobblestone street.

where C is 10 times identity (c) 0.1 where C is 0.1 times
identity. Overall, we see that the DINO score and CLIP-
T score of CNTLoRA-X-QR improves over CNTLoRA-X.
This might be due to the fact that for QR decomposition,
there is no fractional allocation of singular matrix between
up and down matrices and hence there is balance between
image and text fidelity quite well. In fact, the fractional

value p can allow us to balance image and text fidelity
well. As seen for higher fraction value of 0.75, DINO
score increases while CLIP-T score decreases. If we de-
crease the fraction value to 0.25, DINO score decrease to
63.26 while the CLIP-T score increases to 27.01. When the
fraction value is decreased further to 0.1, DINO score de-
creases to 62.41 while CLIP-T increases to 28.04. Hence,



Figure 5. Plot showing how the generation evolves for different initialization methods on the Dreambooth dataset for the dog class. The
prompts from left to right are (a) A S* dog in a chef outfit. (b) A S* dog in the snow. (c) A S* dog with a city in the background.

our proposed fractional allocation can maintain a balance
between image and text fidelity. As for different variants of
CNTLoRA-Sh, the newer hyperparameters of C seems to
produce poorer image fidelty performance. However, they
lead to better prompt fidelity.

Qualitative Results We also show qualitative results on ad-
ditional prompts for the duck, teapot and dog classes in
Figs. 3, 4 and 5 respectively. In Fig. 3, we observe that at
100 iterations of training, LoRA (i.e. random initialization)
produces poor performance in terms of image fidelity. How-
ever, for both EVA and CNTLoRA-X, we observe better im-
age fidelity due to data-driven initialization. Infact, for the
prompt “A S* toy floating on top of water”, CNTLoRA-X
produces better image fidelity where the face of the duck
atleast appears compared to that of EVA.

In Fig. 4, we observe that at 100 iterations of training,
LoRA (i.e. random initialization) and EVA produces poor
performance in terms of image fidelity for the prompt “A S*
teapot with the Eiffel tower in the background.”. However,
for CNTLoRA-X, we observe better image fidelity. The
pattern is repeated even for the prompt “A S* teapot with
a wheat field in the background.”

In Fig. 5, we observe that at 100 iterations of training,
LoRA (i.e. random initialization) and EVA produces poor
image fidelity performance for the prompts “A S* dog in a
chef outfit.” and “A S* dog with a city in the background.”.
However, for CNTLoRA-X, we observe better image fi-
delity. Even at 400 iterations of training, CNTLoRA-X pro-
duces better image fidelity for the prompt “A S* dog in the
snow”.

Figure 6. Figure showing how image captions evolve with increas-
ing number of steps for different conditioning input images. The
samples are from myVLM dataset. Presence of <*> in the gener-
ated outputs suggest that the concept has been identified. Further-
more, generation of concise prompts suggest that the model has
been well fine-tuned.



Figure 7. Plot showing how the rank distribution takes place when fine-tuned on the myVLM dataset.

4.2. Image Understanding

Qualitative results In Fig. 6, we observe how the captions
evolve for different training steps i.e. 6, 14, 20 for the <my
shoe> and <my toy> object. Our proposed framework
CNTLoRA-X can recognize the personalized toy even at
6 steps. Even at 20 steps, it produces a more descriptive
caption compared to LoRA and EVA. For the personalized
shoe, our proposed method can produce more descriptive
and accurate captions at Step 14 and Step 20. At step 6,
even though the personalized object is not identified, our
method CNTLoRA-X produces more accurate descriptions.
Rank Distribution in VAS In our proposed Variable
Adapter Structure (VAS) framework, we have variable
ranks across different attachment points. In Fig. 7, we visu-
alize this variable rank allocation across attachment points
for both the language model and vision encoder when fine-
tuned on the myVLM dataset. For the language model case,
we see that the rank is distributed more or less randomly
across all attachment points. For the vision encoder case,
we see higher rank allocation in the later layers while lower
rank allocation in the shallower layers of the text encoder.
This suggests that the fine-tuning image dataset has not very
different distribution from pre-training dataset. Rather, the
language style is changed and adapters need to be learned
mainly for the language model.

4.3. Language Understanding

Quantitative results We compare our methods against
existing parameter-efficient fine-tuning approaches on the
GLUE benchmark, which includes diverse language under-
standing tasks. Also, we compare our method combined

with QR decomposition simultaneously. As shown in Ta-
ble. 4, most of CNTLoRA variants consistently achieve
high performance. Especially, CNTLoRA-X-SVD consis-
tently achieves the best or near-best performance in various
datasets. These results highlight that CNTLoRA achieves
strong performance not only when using SVD but also when
initialized with QR decomposition, demonstrating the effec-
tiveness of both approaches in enhancing fine-tuning.
Training curve We present the training curves for MRPC
dataset and RTE dataset of the GLUE Benchmark in Fig-
ures 8a and 8b, respectively showing that our method
achieves faster convergence compared to LoRA and EVA,
particularly in the early epochs. We observe that our ini-
tialization better preserves pre-trained knowledge, allowing
for a more stable adaptation to downstream tasks. We also
find that our model maintains consistently lower training
loss curves across multiple tasks, demonstrating improved
fine-tuning stability.
Performance convergence We present the performance
convergence results for MRPC and RTE of the GLUE
Benchmark in Figures 9a and 9b, showing that our method
achieves more stable performance compared to LoRA and
EVA, with reduced fluctuations during fine-tuning. We ob-
serve that our initialization accelerates convergence, allow-
ing the model to reach optimal performance with fewer fine-
tuning steps. We also find that our approach consistently
achieves higher final accuracy, demonstrating its effective-
ness in enhancing fine-tuning efficiency and stability.



Table 4. Comparison of all methods for RoBERTaLarge [3] on GLUE tasks. We report Matthew’s correlation for CoLA, Pearson correlation
for STS-B, matched accuracy for MNLI, and accuracy for remaining tasks.

Method MNLI QNLI QQP SST2 CoLA MRPC RTE STS-B Avg

FFT 90.2 94.7 92.2 96.4 68.0 90.9 86.6 92.4 88.93
LoRA 90.7 94.8 92.0 96.2 69.1 91.1 88.1 92.3 89.29
AdaLoRA 90.5 94.8 90.6 96.1 68.2 90.7 84.4 91.8 88.39
PiSSA 90.1 94.7 92.2 96.1 68.7 90.4 87.6 92.5 88.89
OLoRA 90.9 95.0 92.0 96.3 69.0 91.0 87.9 92.4 89.32
EVA 90.8 95.0 92.1 96.2 69.5 91.4 88.8 92.6 89.55
DoRA 89.5 94.6 89.9 96.1 69.3 91.0 88.4 92.4 88.90

CNTLoRA-X-SVD 91.1 96.1 93.1 96.4 69.7 91.6 89.1 93.2 90.03
CNTLoRA-X-QR 90.9 96.2 92.9 95.1 69.5 91.2 88.9 92.1 89.6
CNTLoRA-S-SVD 90.2 95.9 92.2 96.1 70.1 91.8 88.2 92.8 89.6
CNTLoRA-S-QR 90.8 95.7 92.8 97.1 69.6 91.6 88.8 92.6 89.8
CNTLoRA-Sh-SVD 90.9 95.3 92.3 96.4 69.8 91.3 89.5 92.4 89.7
CNTLoRA-Sh-QR 90.6 95.0 92.1 96.3 69.5 92.4 89.1 92.5 89.7

(a) Training loss for different initialization methods on the MRPC dataset. (b) Training loss for different initialization methods on the RTE dataset.

Figure 8. Plots showing how the training loss varies with different epochs for different initialization methods on the MRPC and RTE
datasets.

(a) Accuracy for different initialization methods on the MRPC dataset. (b) Accuracy for different initialization methods on the RTE dataset.

Figure 9. Plots showing how the accuracy varies with different epochs for different initialization methods on the MRPC and RTE datasets.



References
[1] Yotam Alaluf, Elad Richardson, Sergey Tulyakov, Kfir Aber-

man, and Daniel Cohen-Or. Myvlm: Personalizing vlms for
user-specific queries. In European Conference on Computer
Vision (ECCV), pages 73–91. Springer, 2024. 1

[2] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning. arXiv preprint arXiv:2304.08485,
2023. 1

[3] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-
moyer, and Veselin Stoyanov. Roberta: A robustly optimized
bert pretraining approach. arXiv preprint arXiv:1907.11692,
2019. 1, 7

[4] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
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