NGD: Neural Gradient Based Deformation for Monocular Garment
Reconstruction

Soham Dasgupta

Shanthika Naik  Preet Savalia

Sujay Kumar Ingle  Avinash Sharma

Indian Institute of Technology Jodhpur
{sohamd, shanthikanaik, b22ai036, d23csa003, avinashsharma}@iitj.ac.in

1. Extended Related Works

Clothed Human Reconstruction: Clothed Human Recon-
struction in itself is quite a challenging task, demanding
generalization to different shapes and poses, tracking com-
plex human motion while accommodating the garment’s
complex nature like non-rigid articulation, wrinkling, and
their physical interaction with the parent body. Pifu [30]
is one of the early works that used implicit representation
to reconstruct clothed humans from a single image. [2, 11—
13,31, 37, 39, 41] further improves the reconstruction qual-
ity. While these methods provide good 3D reconstruction,
they are temporally inconsistent when applied to videos.
ICON [36] uses a two-stage pipeline first to obtain meshes
from each frame of the video, and further employs Scani-
mate [32] to obtain temporally consistent animation of the
clothed human meshes. However, learning from images al-
ways requires ground truth mesh data to learn from.

As compared to single images, monocular videos pro-
vide multi-view information in time, enabling richer recon-
struction. Some methods [2, 35] use parametric body mod-
els like SMPL [24] as a base template and learn to deform
them to match the clothed human body. Neural Body [27]
utilizes the Neural Radiance Field for learning human rep-
resentation and the underlying geometry extracted from the
same representation. While neural rendering provides re-
ally good image reconstruction, it suffers from the limita-
tions of the representation to extract good geometry. A line
of work [9, 15] uses implicit representation which provides
good reconstruction even for considerably loose garments.
Reloo [10] further improves loose garment reconstruction
by defining virtual bones on the garments and learning per-
frame deformations. All the above-mentioned methods ex-
tract clothed humans as a single mesh and cannot extract
garment mesh separately.

Image-based Garment Reconstruction: Several exist-
ing garment reconstruction methods [14, 26, 42] recover
garments from monocular images. [14] deforms template
mesh to represent garment image. More recent methods
adopt implicit representation [3, 26] to represent the gar-

ments. DIG [19], Drapenet [25] learns to drape garment
onto target SMPL body. ISP [20], Sewformer [23] uti-
lize 2D sewing patterns to represent the garment which is
stitched together to represent the 3D garment mesh. [21]
further builds on ISP [20], to recover the garments from the
image with improved accuracy. [19, 25] are garment drap-
ing methods that also reconstruct garments from images. [5]
learns a latent garment space. [6] further improves high-
frequency details for garment form images. All the afore-
mentioned single-image reconstruction methods require su-
pervised training on a large dataset.

2. Background

We assume any garment can be represented as a 2-manifold
triangular surface mesh S, in R3, with vertices V and tri-
angles 7. Any deformation of a given triangular surface
mesh S can be defined as a displacement function d which
maps each point p; to a displacement vector d(p;). A new
surface &’ can then be defined as follow:

S ={p+d(p:)|pcS} (1)

We further define this deformation as a piecewise linear dis-
placement function p : S — R3,v; +— p;, defined on the
mesh surface. This piecewise linear function can be inter-
polated inside a triangle with vertices (v;, vj, vy) as

p(u) = piBi(u) + p;B;(u) + pxBxk(u) 2)

where u = (u,v) is the 2D conformal map parameteriza-
tion for the triangular surface mesh S. B(u) is the orthonor-
mal basis function to the tangent space of the triangle sat-
isfying partition of unity B;(u) + Bj(u) + By(u) = 1.
The gradient of this function Vp(u) is defined as a uni-
form per triangle jacobians J € R3*2 in the basis B =
(Bq;, Bj, Bk) € R3%2,

J = Vp(u) = (p; — Pi)VBj(u)

3
+ (pr — Pi) VB (u) ®



The gradient of VB;(u) can be defined as

1
VB () = -t )
where | denotes the counter-clockwise rotation in the tri-
angle space while A7 is the area of the triangle. The Equa-
tion 3 after substitution then gives rise to a constant Jaco-
bian J for the given triangle in the surface mesh S. The
entire process can be described in matrix form for each tri-
anglet:teT

J: =pV,B (5)

where VI can be considered as a discrete differential oper-
ator for the surface mesh S.

For a piecewise deformation function p : S — R3, v;
Pi, the gradient within the face is a constant J : J € R3%3,
Note that here jacobian J is different J which was previ-
ously defined w.r.t the triangle basis B., however, here it is
defined w.r.t Euclidean basis E. The gradient on each face
t :t € T can now be defined as :

Vpx
J:=Vp= |Vpy (6)
Vp,

This jacobians J can then be modified by multiplying by
matrix M : M € R3*3 which yields new set of face jaco-
bians J; = M, J; for each face ¢ : ¢t € T. The final de-
formation map p* is obtained by making sure the gradients
Vp* is as close to the deformed jacobians J’. In the contin-
uous setting this becomes an energy minimization problem:

E(p) = / /3 IVp(uv) — gu,v)lduds (D)

where g is the continuous gradient field analogous to J’. In
a more discrete setting, the energy equations become:

p* = min 3 |4,/ V(p) - T3 (®)
teT

The solution can be obtained by solving the linear system
formed by possion solved by knowing surface mesh cotan-
gent Laplacian L, and mesh mass matrix A. The J’ stacked
to forms M which we use in our method to deform a base
mesh.

For our use case, we handle the matrix M to dynami-
cally deform the base mesh of the garment S in order to
obtain the new garment mesh S’. The primary benefit of
using neural gradient-based deformation over other meth-
ods, such as the Laplacian-based deformation methods, is
that it yields a smooth C°-continuous mesh. In contrast, C*-
continuous methods, like those based on bi-laplacians, can
cause over-smoothing, making them unsuitable for highly
dynamic objects such as garments.

The primary benefit of using neural gradient-based de-
formation over other methods, such as the Laplacian-
based deformation methods, is that it yields a smooth CO-
continuous mesh. In contrast, C!-continuous methods, like
those based on bi-laplacians, can cause over-smoothing,
making them unsuitable for highly dynamic objects such
as garments. The major benefit of this framework is that the
predicted deformation field is triangulation agnostic while
being in the gradient domain hence able to preserve highly
accurate details.

3. Extended Methodology
3.1. Pose Encoding

Existing methods that condition the neural network with
time parameter ¢ tend to overfit each input view. While
this improves reconstruction quality in the training view,
the occluded areas lack high-frequency details, resulting in
a smoothened surface. In contrast, conditioning on pose
rather than time enables better feature alignment, as dif-
ferent viewpoints with the same pose can occur at various
time instances, ensuring more consistent and coherent re-
constructions. However directly using pose # € R? as a
condition, where d = 72 for SMPL human body model
leads to suboptimal training performance. Hence, instead
of directly using the pose 6; to the MLP, we use the PCA
(Principle Component Analysis) for encoding the pose pa-
rameters as 7y (6;).

For an input video with 7" frames, the overall pose is de-
fined as # € RT*?, We find the PCA component of poses
across all frames, 0pc4 € RT ¥4, v(0¢) € R* encodes the
pose 0; € R by projecting it onto the first X PCA com-
ponents to get the reduced-dimension pose component. We
use this PCA-projected pose component to condition f.
We find that projected pose conditioning helps in better gen-
eralization and prevents the neural network from overfitting
to each frame. We set k as 4 for the geometric reconstruc-
tion module and 2 for the appearance module.

3.2. Gradient Based Adaptive Remeshing

We provide more details about our remeshing process over
here. Post gradiant G(f;) calculation on the faces f; of
the mesh M 2. We select the top quantile of faces F,, =
(£ 119(f:)]| > quantile,, (J|G(£)[)} for a percentile w of
triangle face. Subsequently, we prune all faces Fs =
{fi | L(e;) > Oengm, Ye; € E(fi)} whose edge lengths fall
below a certain threshold §iengm. Both the percentile o and
edge length threshold Geng are determined using a linearly
decaying function a(t) = ag+7-t, Adiengin (1) = o — A -1,
ranging from high percentile and large edge length values to
low percentile and small edge length values. This progres-
sive strategy ensures stable remeshing that preserves crucial
details without overloading the mesh with redundant ver-
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tices. After the previous step, we obtain a face mask for
each face F; : Fs C F indicating the faces for remeshing.
SE ={e; € E(fi) | fi € Fs}.

The remeshing steps include two sequential operations -
edge splitting and edge flipping as illustrated in Figure 2.
We perform two sets of sequential operations on the set of
selected edges F: edge splitting and edge flipping. In edge
splitting, a selected edge is divided at its midpoint, creat-
ing two new triangles. Edge flipping adjusts the valence
of each vertex, targeting a valence (number of neighbors at
each vertex) of 6 for interior vertices and 4 for boundary
vertices. The algorithm flips edges where the valence is too
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Figure 1. Base Garment Meshes: We present sample images from each video sequence with their corresponding base mesh employed in
our experiments and evaluations.

high; if flipping reduces the valence, the change is retained;
otherwise, the edge is flipped back.

Post remeshing, the modified topology of the base mesh
M after the re-meshing step requires the recomputation of
all mesh attributes. The static deformation field J*°, being
discrete and defined on previous mesh topology, contrasts to
the continuous nature of the dynamic field J, D requires the
recomputation of the discrete Jacobians field J°. Since Ja-
cobians J¥ is still essentially an extrinsic field and doesn’t
depend on the triangulation of the mesh, we can interpolate
the new set Jacobians JS from the previous set .J° using
K nearest neighbors interpolation. Similarly, for new op-



Figure 2. Remeshing Operations: (a) Edge split (colored in red)
into new vertices vni and vna. (b) Edge flipping
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Figure 3. Advantage of vertex loss: We can successfully prevent
local minimums by preventing premature convergence

(a) Ours w/o vertex noise

timization parameters, including the first and second mo-
ments m] and mj for the Adam optimizer [17], are also
interpolated after each remeshing step to maintain consis-
tent training and prevent jerk in the optimization. Finally,
the new skinning weights W" are also computed by inter-
polating the previous skinning weights on the mesh surface.
Specifically, the newly interpolated m7, ms, J” and W' at
each face center is computed as follows:

1

dite
S S ®
Zk:l ﬁ
K
G = Grwi (€ (mi,me, W), (10)
k=1

where (] represents post-remeshed mesh attributes and dj,
represents the distance between the original and changed
face centers for the k" nearest neighbor and e is added for
numerical stability.

3.3. Dealing with Local Minima

Vertex Noise: One common challenge in reconstructing
clothing, such as shirts and pants, is that the optimization
process often becomes trapped in local minima as shown in
Figure 3. In an effort to minimize local rendering losses,
the global geometry is inadvertently distorted, leading to
unrealistic artifacts. To address this, we introduce a novel
exponentially decaying noise applied to the vertices v; of

the final skinned mesh M/ at each iteration:
X@)zAKQU-(l—Z) 11)

b = v+ p- X(t) (12)

where N(0,1) is a standard Gaussian distribution, y is the
noise scaling parameter and e and 7 represent the current
and total iterations, respectively. This noise encourages the
model to prioritize global geometry in the initial stages, pre-
venting early overfitting to local details. As training pro-
gresses, the noise and learning rate both gradually reduce,
allowing the model to refine local geometric features with-
out distorting the overall structure. Importantly, this smooth
noise application introduces no additional computational
overhead while significantly improving the reconstruction
quality of loose garments.

3.4. Mask Loss

A common challenge in garment reconstruction is self-
occlusion, where parts of the garment, like the hands, oc-
clude each other in the image. This occlusion also ap-
pears in the mask generated from the input image, but the
corresponding rendered meshes lack such occlusions, lead-
ing to inconsistencies during training and causing artifacts.
REC-MYV [28] addresses these self-occlusion inconsisten-
cies by utilizing feature lines, however, obtaining accurate
feature lines across frames is expensive and labor-intensive.
Instead, we employ part segmentation from Sapiens [16]
to obtain hand masks I3.., which help in identifying sig-
nificant self-occlusions (as hands are mostly the primary
cause). These occlusion masks are used to modify the mask
loss and reduce occlusion-induced artifacts. The mask loss
is formally defined as:

Emask = H(Igred @ (10 - I(fcc))v I;t”% (13)

3.5. Data Preprocessing

We utilize existing pre-trained vision models to obtain re-
liable priors. We extract SMPL shape 3; € R and per-
frame pose 6; € RY*72 parameters as well as per-frame
camera estimation 7, = (R,T) : R € RV*3X3 T ¢ R?
using 4DHumans [8], an SMPL fitting method for monoc-
ular video. Per-frame normal map, depth map, and part-
segmentation are recovered using a pre-trained human foun-
dation model Sapiens [16], which serves as pseudo-ground
truth during optimization. Finally, a t-pose base garment
M5B is obtained from the first frame using BCNet [14]. Our
method is robust to the quality of these base meshes (de-
tails in Suppl.). We obtained the garment skinning weight
W : W € R¥*24 interpolated from posed body skinning
weight WW. The interpolation is performed using Gaus-
sian Radial Functions (GRBF) [4] with Gaussian Kernel
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Figure 4. Global garment shape: We can significantly transform
our garment from the initial base mesh.

7‘2

Q(r) = e *i where m; is the Euclidean distance between
a garment vertex v; € M P and its nearest body vertex.

Base Garment Meshes : We visualize all the base gar-
ments used for our evaluations Figure 1. Most of the tem-
plates are generated from BCNet [14] with few exceptions
which are derived from existing garment assets. Please note
that we utilize the base mesh with only shape-specific defor-
mations provided by BCNet. Furthermore, as illustrated in
Figure 4, our global shape deformation effectively morphs
the base mesh, substantially altering its structure to approx-
imate the desired shape.

4. Experiments

4.1. Dataset

4DDress-Mono : Dress4D [33] is a real-world 4D dataset
of textured clothed humans in diverse motion sequences. It
provides dynamic meshes with vertex-level semantic anno-
tations for garments and the human body, combined with fit-
ted SMPL(-X) models. However, the default camera setup
in Dress4D does not capture a full 360° view of the gar-
ment from a single camera, making it challenging to record
details across frames and register them onto the garment. To
address this, we create a modified dataset by initializing a
virtual camera and generating a 360° video of the subjects,
enabling a more comprehensive benchmark for our model
against baseline methods.

Additional Datasets: We evaluate our method on two
sequences from the PeopleSnapshot dataset [1] and two
from REC-MV [28] video recordings. While PeopleSnap-
shot features standard clothing with a close fit and simple
motions, REC-MV includes sequences with loose garments,
such as skirts, which are crucial for assessing the robustness
of our approach under diverse conditions.

Evaluation Protocol : We provide qualitative compar-
isons for the 4DDress-Mono dataset and evaluate surface re-

construction using Chamfer Distance L5 and normal consis-
tency (NC). For texture recovery, we assess novel view syn-
thesis quality using PSNR, SSIM [34], and LPIPS [38]. Ad-
ditionally, we present qualitative comparisons for both sur-
face reconstruction and novel view synthesis on this dataset.
For additional datasets such as PeopleSnapshot [ 1] and Rec-
MYV [28], we report only qualitative comparisons of mesh
surface quality.

Choice of SOTAs: Given the limited number of works
on monocular garment reconstruction, we rely on the fol-
lowing state-of-the-art methods: SCARF [7], Rec-MV [28],
and DGarments [22].or the 4D-Dress dataset, we utilized
the ground truth SMPL mesh as the base for reconstruc-
tion in SCARF [7], DGarments [22], and our proposed
method. This ensured consistency in surface reconstruc-
tion evaluations across all approaches. However, for se-
quence 148, we were unable to obtain a plausible recon-
struction using SCARF, and thus, we omit its results for
this sequence. Additionally, the texture generation code
for DGarments [22] was not provided, limiting our ability
to evaluate its appearance module. For Rec-MV [28], the
absence of data preprocessing code—specifically, the fea-
ture line estimation required for extracting garment struc-
ture—prevented us from conducting direct comparisons on
our custom dataset. Nevertheless, we present qualitative
results on additional datasets [1, 28], as the preprocessed
files for these datasets were available. For these additional
datasets, we selected a subset where the training sequences
consisted of a single circular motion to ensure consistency
in evaluation.

4.2. Additional Experiments
4.3. Comparisons

We provide more qualitative comparisons for both surface
reconstruction and novel view synthesis comparison exper-
iments of our method with the SOTAs [7, 22, 28] given in
Figure 9, Figure 10 and Figure 11. Similar to the previ-
ously shown results, our method consistently achieves high-
quality reconstructions, capturing finer details with minimal
artifacts. By decoupling geometry and appearance recon-
struction, our approach enables more accurate and realistic
reconstruction of both.

We further present qualitative results across multiple
frames to demonstrate the dynamic reconstruction capabil-
ity of our method, as shown in Figure 5. Our reconstructed
results from the proposed method seem to remain consis-
tent across time frames. The REC-MV authors provided a
preprocessed, sampled version of their dataset and the Peo-
pleSnapshot dataset, but neither includes groundtruth novel
view data, making direct comparisons for novel view syn-
thesis infeasible. However, we have included a qualitative
comparison of novel view generation (sans available ground
truth view) in Figure 6 using their provided results. The



Figure 5. Dynamic garment reconstruction results of our method for one sequence from 4D-Dress [33] and one sequence from Rec-MV
[28] dataset

aforementioned figure shows that our method yields supe-
rior texture reconstruction in novel views, in comparison to
REC-MV.

4.4. Extended Ablative Studies

Effect of Shape Regularizer: The Jacobian regularizer
plays a crucial role in constraining triangle deformations,
ensuring that they do not deviate significantly from their
original shapes. By preserving the global geometric struc-
ture, the regularizer prevents excessive divergence from the
base mesh, which could otherwise introduce noticeable ar-

tifacts in under-constrained novel views. To illustrate these
phenomena, we provide qualitative comparisons in Fig-
ure 4.4 to demonstrate the effectiveness of L.,. In the ab-
sence of this regularization term, the reconstruction deviates
significantly from the original shape, leading to substantial
artifacts. Without the regularizer, our proposed method per-
forms poorly on tighter clothing, such as shirts, where shape
preservation is critical.

Effect of Vertex Noise : Cloth reconstruction is a highly
underconstrained problem, particularly in monocular set-
tings. This challenge is further exacerbated when using de-
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Figure 6. The novel-view synthesis results of REC-MV and Ours.
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Figure 7. Importance of Regularization: Regularization helps

maintain the template structure by preventing excessive deforma-
tions, which could otherwise lead to unrealistic results.
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(b) Ours Full

(a) Ours w/o vertex noise

Figure 8. Importance of Vertex Noise: Without vertex noise, our
method may converge to local minima, leading to unnatural folds
of the reconstructed garments.

ferred shading-based differentiable rendering engines like
nvdiffrast [18]. During the reconstruction of fine details,
such as small folds, the method often misaligns garments
and converges prematurely to local minima, from which

Table 1. comparison of geometry reconstruction on Dress4D [33].

Method Chamfer Distance Lo | NC1
Ours w/o Vertex Noise 0.091 0.910
Ours Full 0.088 0.912

it fails to recover. As a result, it attempts to reconstruct
garment boundaries as folds in an undesirable manner, as
shown in Figure 3. This issue is more pronounced when us-
ing L1 loss instead of Huber loss, though even with the lat-
ter, it is not entirely avoided. To address this, we introduce
an exponentially decaying vertex noise strategy, particularly
for garments prone to local minima (e.g., pants). This tech-
nique prevents premature convergence during early opti-
mization stages, promoting a more global reconstruction.
As illustrated in Figure 8, vertex noise significantly en-
hances reconstruction quality, with quantitative results pro-
vided in Table I.

5. Discussion and Limitations

Temporal Consistency : Although our method demon-
strates reasonably good temporal consistency across frames
due to dynamic prediction from a single MLP, it does not
guarantee full temporal coherence.

Physics Based Constrains : Monocular reconstruction
is a highly underconstrained problem. Novel views out-
side the visible region are particularly ill-posed, constrained
only by weak regularization. As a result, reconstructions in
these regions can be physically implausible. Introducing
physics-based constraints from simulators [29, 40] can be
especially useful in achieving more realistic deformations
in these unconstrained regions.
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