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Supplementary Material

A. More Details about the CA-VQA Data

A.1. Spatial Task Categories

We here provide more details on the different spatial task
categories covered in CA-VQA, with visualizations of ex-
amples provided in Figs. 5 to 7.
• Binary.

– Viewpoint-Dependent. We consider the spatial rela-
tionships left vs. right and in front vs. behind between
two objects, as determined from the current camera
pose / viewpoint:2

* Left vs. Right. We determine the answer based on the
horizontal coordinates of the objects’ 2D bounding
box centers.

* In front vs. Behind. We determine the answer based
on the distances between the camera and the objects’
3D bounding box centers.

– Relative Object Size. We determine the answer based
on the objects’ width, length or height, as defined in
Regression below.

– Object Presence. For each sample asking about an ob-
ject present in the image, we also generate a negative
sample which asks about a (randomly sampled) object
not present in the image, to ensure a uniform distribu-
tion over answers (Yes / No).

• Counting. We determine the answer by simply counting
the number of bounding boxes present in the image for
a given object class. We also generate negative samples
with (randomly sampled) objects not present in the image
(i.e., such that the correct answer is 0).

• Multi-choice. This covers questions across the other spa-
tial task categories, except for 2D and 3D grounding. We
randomize the order of the options, obtaining the incor-
rect options as follows:
– Regression (Metric Estimation). We compute three

wrong options with either 10% increments deviating
from the real answer, or 5cm, whichever value is larger.

– Counting. We always ensure that 0 is an option (i.e.,
object is not present). We then randomly sample (ad-
ditional) wrong options among the non-zero integers
within [GT → 3,GT + 3] (where GT is the correct an-
swer), s.t. the total number of options is 4.

– 2D / 3D Referring. We randomly sample three wrong
2Note that we do not consider above vs. below to avoid ambiguity:

“above” could either refer to 2D image space (i.e., the 2D bounding box of
A is above that of B), or to 3D space, where the latter can be ambiguous
as well (i.e., do we just require that the 3D bounding box of A is located
higher in terms of vertical dimension, or do we also require that A is lo-
cated directly above B in terms of horizontal dimensions – the latter might
best match with how humans colloquially define “above”).

object classes.
• Regression (Metric Estimation).

– Egocentric Distance. The distance between the cam-
era and the closest point of the object’s point cloud.

– Object Distance. We consider both (minimum) dis-
tance and center distance between two objects:
* (Minimum) Distance. The distance between the

closest points of the two objects’ point clouds (i.e.,
minimum point distance).

* Center Distance. The distance between the center
points of the two objects’ 3D bounding boxes.

– Object Size. We consider the 3D dimensions width,
length and height, defined as follows:
* Width. The length of the larger horizontal edge of

the object’s 3D bounding box (i.e., max(xlen, zlen)).
* Length. The length of the shorter horizontal edge of

the object’s 3D bounding box (i.e., min(xlen, zlen))
* Height. The length of the vertical edge of the ob-

ject’s 3D bounding box (i.e., ylen).
• 2D Grounding. We use the 2D bounding box obtained

from projecting the object’s 3D bounding box into 2D im-
age space.

• 3D Grounding. We directly use the 3D bounding boxes
provided in CA-1M [61].

A.2. Depth: Chain-of-Thought (CoT) / Tool-Use

We prepare multi-step CoT responses involving depth for
questions within the Binary (only “behind vs. in front”) and
Regression (Metric Estimation) categories, as the ground
truth answers for those rely on depth information. We also
did preliminary experiments with 3D Grounding samples,
but found that performance does not improve / even slightly
regresses there, so we did not include any such samples in
the final dataset.3

The sequence format of the samples is illustrated in
Fig. 3, involving the target objects’ 2D bounding boxes and
depth values and the final (original) answer. We use the GT
depth maps for generating the training examples, extract-
ing the median depth value within the object’s 2D bounding
box4. At test time, we then consider two alternative ap-
proaches for obtaining the depth values:

3We hypothesize that 3D grounding is too complex of a task to benefit
from the simple depth information provided in the multi-step CoT answers,
and that the model might just get confused. We leave a more comprehen-
sive study of how to benefit 3D grounding with CoT for future work.

4We also did preliminary experiments with other ways to extract a sin-
gle depth value from the depth map within the 2D bounding box, such
as the value at the center of the box or percentiles other than the median,
but did not see significant improvements over using the median, which we
found to be a robust choice.



Figure 5. CA-VQA Overview. Example QA pairs from our Cubify Anything VQA (CA-VQA) dataset, aiming to unlock object-centric
3D spatial understanding in MLLMs. Using high-quality 3D ground truth annotations from CA-1M [61], we generate spatial perception
questions across a variety of different tasks, e.g., involving relative relationships, metric measurements, and 3D object bounding boxes.

• Model prediction (CoT). We let the model predict the
depth values (called CoT in the experiments). As the
model was trained on sequences involving the ground
truth depth values, the models learn to predict depth. Our
experiments reveal the accuracy of the resulting depth es-
timates.

• Tool-use. We allow the model to leverage a given depth
map via tool-use. I.e., for a function call of the form
Depth(bbox) ↑ we extract the median depth value within
the 2D bounding box, insert the depth value into the se-
quence, and then let the model continue its prediction to
arrive at the final answer (see Fig. 3).

B. Optimal Data Mixture for MM-Spatial

We aim to build a generalist MLLM that excels across a
variety of diverse tasks – as opposed to a specialist that only
excels at spatial understanding. To this end, we identify the
mixture weight for the new spatial data that achieves the
best performance trade-off between the spatial vs. all other
benchmark categories: general, knowledge, text-rich, 2D
referring & grounding. Investigating the effect of adding
a new model capability is particularly relevant for models
with limited capacity, such as the 3B model we consider.

Results are shown in Tab. 7. MM-Spatial maintains sim-
ilar performance as the MM1.5 baseline across most task
categories, while significantly improving on the Spatial cat-
egory. This suggests that our model can successfully adopt
the new spatial understanding capability without regressing
on all the other capabilities, resulting in a generalist MLLM.
The data mixture ratio of 2:1 (spatial:general) provides a
good performance trade-off and is used for MM-Spatial
throughout. We also consider a spatial Specialist Model that

is trained on CA-VQA only; however, this model provides
only a small improvement on the spatial category, while
regressing substantially on all other benchmark categories.
We use specialist models for some of our ablations to speed
up experimentation. Appendix C shows the detailed result
breakdowns across the different task categories, compared
to SOTA models.

C. Results on Further Benchmark Categories

We here present a more detailed analysis of MM-Spatial
compared with SOTA baselines across the different bench-
mark categories. Results on general and knowledge bench-
marks are shown in Tab. 8, results on text-rich benchmarks
are shown in Tab. 9, and results on 2D referring & ground-
ing benchmarks are shown in Tab. 10. Overall, we ob-
serve that our MM-Spatial model maintains a level of per-
formance similar to the vanilla MM1.5 baseline. This sug-
gests that our model is able to successfully adopt the new
spatial understanding capability without sacrificing perfor-
mance on all the other model capabilities, resulting in a gen-
eralist MLLM.

D. Analysis of Blind Filtering Procedure

Tab. 11 analyses the effectiveness of our blind filtering pro-
cedure outlined in Sec. 3.1 in ensuring that our CA-VQA
benchmark becomes more reliant on vision input. This
is in contrast to some of the tasks from the other spa-
tial understanding benchmarks we consider (CV-Bench and
SpatialRGPT-Bench), where we found that blind models
can perform very strongly and even rival models with vision
input in some cases (see Sec. 5). Hence, these benchmarks
would likely also benefit from blind filtering.



Figure 6. Examples of CA-VQA data samples from the Binary, Counting and Multi-choice categories.

E. Axis-aligned vs. Oriented 3D Boxes

Fig. 8 emphasizes the fundamental difference between axis-
aligned (AABB) and oriented (OBB) 3D bounding boxes
and how they affect the resulting object dimensions. This
provides an indication of the misalignment issues arising
when evaluating a model trained on data based on OBB
ground truth (i.e., MM-Spatial, which is based on the
gravity-aligned 7-DOF yaw-oriented 3D bounding boxes
from CA-1M) on a benchmark based on AABB ground
truth (i.e., SpatialRGPT-Bench) and vice versa (i.e., evaluat-
ing SpatialRGPT on CA-VQA), as seen in Secs. 5.3 and 5.5.



Figure 7. Examples of CA-VQA data samples from the Regression (Metric Estimation) and 2D Grounding categories.

Model

Benchmark Category Averages

Mix. Ratio Spatial Understanding
General Knowledge Text-rich Refer&Ground Avg.Rel. Eff. CA-VQA CV-Bench SRGPT-Bench Avg.

MM1.5-3B [128] 0:1 0:100 28.9 64.9 26.0 39.9 64.7 46.2 62.1 77.7 58.1

1:1 12:88 66.3 91.2 52.8 70.1 65.0 46.2 62.1 79.1 64.5
MM-Spatial-3B 2:1 22:78 67.1 92.4 53.7 71.1 64.8 46.7 61.4 78.8 64.5

4:1 36:64 67.3 93.0 52.7 71.0 65.0 44.9 60.7 78.0 63.9
8:1 54:46 67.4 93.1 53.7 71.4 64.8 46.8 61.2 79.0 64.6

MM-Spatial-3B 1:0 100:0 67.1 93.0 54.1 71.4 42.6 34.7 17.2 23.9 38.0

Table 7. Data Mixture Ratio Results. Comparison of different data mixture ratios – both (Rel)ative to the General category (as in MM1.5),
and (Eff)ective when considering the dataset sizes – on aggregated metrics across the different benchmark categories. Overall, MM-Spatial
is a generalist MMLM that improves a lot on the Spatial category while maintaining strong performance on the other categories. The data
mixture ratio of 2:1 (spatial:general) provides a good performance trade-off and is used for MM-Spatial throughout. The last line considers
a spatial Specialist Model that is trained on CA-VQA only; this model provides only a minor improvement on the spatial category, while
regressing substantially on all other benchmark categories.



Model

Knowledge Benchmarks General Benchmarks

AI2D
(test)

MMMU
(val)

MathV
(testmini)

MME
(P/C) SEEDI POPE LLaVAW MM-Vet RealWorldQA

MiniCPM-V 2.0-3B [119] 62.9 38.2 38.7 1808.2† 67.1 87.8 69.2 38.2 55.8
VILA1.5-3B [76] – 33.3 – 1442.4/– 67.9 85.9 – – –
SpatialRGPT-VILA-1.5-3B [27] – 33.0 – 1424.0/– 69.0 85.5 – 38.2
TinyLLaVA [137] – – – 1464.9/– – 86.4 75.8 32.0 –
Gemini Nano-2 [103] 51.0 32.6 30.6 – – – – – –
Bunny [44] – 41.4 – 1581.5/361.1 72.5 87.2 – – –
BLIP-3 [115] – 41.1 39.6 – 72.2 87.0 – – 60.5
Phi-3-Vision-4B [1] 76.7 40.4 44.5 1441.6/320.0 71.8 85.8 71.6 46.2 59.4
MM1.5-3B [128] 64.5 37.1 37.1 1423.7/277.9 70.2 87.9 74.3 37.1 57.7
MM-Spatial-3B 63.6 36.6 38.4 1530.5/251.8 71.3 88.0 69.9 38.0 59.0

Gemini-1.5-Pro [93] 79.1 60.6 57.7 2110.6† – 88.2 95.3 64.0 64.1
GPT-4V [86] 75.9 53.8 48.7 1771.5† 71.6 75.4 93.1 56.8 56.5
GPT-4o [50] 84.6 69.2 61.3 2310.3† 77.1 85.6 102.0 69.1 75.4

Table 8. Knowledge and General Benchmark Results. Comparison with SOTA models on knowledge and general benchmarks. (†) Sum
of P and C scores. Gemini-1.5-Pro, GPT-4V and GPT-4o numbers are from [33].

Model
WTQ
(test)

TabFact
(test)

OCRBench
(test)

ChartQA
(test)

TextVQA
(val)

DocVQA
(val)

InfoVQA
(val)

MiniCPM-V 2.0-3B [119] 24.2 58.2 60.5 59.8 74.1 71.9 37.6
TinyLLaVA [137] – – – – 59.1 – –
Gemini Nano-2 [103] – – – 51.9 65.9 74.3 54.5
BLIP-3-4B [115] – – – – 71.0 – –
Phi-3-Vision-4B [1] 47.4 67.8 63.7 81.4 70.1 83.3 49.0
MM1.5-3B [128] 37.3 70.5 63.0 73.6 74.4 82.0 45.5
MM-Spatial-3B 36.2 71.0 60.0 75.0 75.3 82.7 43.7

Gemini-1.5-Pro [93] – – 75.4 87.2 78.7 93.1 81.0
GPT-4V [86] – – 64.5 78.5† – 88.4† –
GPT-4o [50] – – 73.6 85.7† – 92.8† –

Table 9. Text-rich Benchmark Results. Comparison with SOTA models on text-rich benchmarks. (†) Numbers are obtained from [63].

Model
RefCOCO
(testA/B)

RefCOCO+
(testA/B)

RefCOCOg
(test)

Flickr30k
(test)

LVIS-Ref
(box/point)

MiniCPM-v2-3B [119] – – – – 48.2/47.7
Phi-3-Vision-4B [1] 46.3 / 36.1 42.0 / 28.8 37.6 27.12 53.8/54.5
InternVL2 [26] 88.2 / 75.9 82.8 / 63.3 78.3 51.6 51.0 / 51.1
MM1.5-3B [128] 91.7 / 85.7 87.67 / 75.23 85.9 85.1 74.0 / 58.2
MM-Spatial-3B 92.2 / 85.9 88.3 / 76.8 86.8 85.1 75.9 / 58.5

Table 10. 2D Referring & Grounding Benchmark Results. Comparison with SOTA models on 2D referring and grounding benchmarks.



Model Eval Inputs
Binary Count. Multi-c.

Regression (Metric Estimation)

AverageEgo-Dist. Obj.-Dist. Obj.-Size

Acc Acc Acc Acc @ 10% Relative Error (ω1)

Before Blind Filtering

1 GPT-4 [2] Text 57.9 35.1 52.7 8.9 8.2 17.0 30.0
2 GPT-4V [86] Image + Text 61.6 68.1 63.2 6.4 8.4 19.7 37.9
3 Improvement from using vision = 2 – 1 +3.7 +33.0 +10.5 -2.5 +0.2 +2.7 +7.9

4 MM-Spatial-3B (Specialist) Text 69.3 69.5 77.6 12.9 11.0 25.2 44.3
5 MM-Spatial-3B (Specialist) Image + Text 83.8 76.9 84.2 46.9 25.4 29.5 57.8
6 Improvement from using vision = 5 - 4 +14.5 +7.4 +6.6 +34.0 +14.4 +4.3 +13.5

After Blind Filtering

7 GPT-4 [2] Text 9.6 8.5 9.6 6.2 6.2 5.8 7.7
8 GPT-4V [86] Image + Text 39.2 63.3 32.9 11.4 9.3 10.1 27.7
9 Improvement from using vision = 8 – 7 +29.6 +54.8 +23.3 +5.2 +3.1 +4.3 +20.0

10 MM-Spatial-3B (Specialist) Text 34.3 60.8 60.7 10.1 8.4 17.9 32.0
11 MM-Spatial-3B (Specialist) Image + Text 69.6 73.3 77.4 47.3 24.4 24.3 52.7
12 Improvement from using vision = 11 – 10 +35.3 +12.5 +16.7 +37.2 +16.0 +6.4 +20.7

Increase in Vision Improvement: Before vs. After Blind Filtering

13 GPT-4/V = 9 – 3 +25.9 +21.8 +12.8 +7.7 +2.9 +1.6 +12.1

14 MM-Spatial-3B (Specialist) = 12 – 6 +20.8 +5.1 +10.1 +3.2 +1.6 +2.1 +7.2

Table 11. CA-VQA Blind Filtering Analysis. We study how the improvement from using vision (i.e., comparing a vision-evaluated model
vs. a blind-evaluated model) changes after applying the blind filtering strategy outlined in Sec. 3.1, which follows [25]. Our results confirm
that after applying our filtering strategy, 1) blind models perform substantially worse, and 2) vision improvements (i.e., the delta between
vision and blind models) increase substantially, for both GPT-4/V and MM-Spatial. This highlights the effectiveness of our blind filtering
procedure in ensuring that our CA-VQA benchmark becomes more reliant on vision input (i.e., less susceptible to a strong language prior).

Figure 8. Comparative visualization of axis-aligned vs. oriented 3D bounding boxes, taken from the SpatialRGPT paper [27, Appendix
K, Figure 11]. The object dimensions computed from AABBs can differ substantially from those computed from OBBs, depending on
the object’s rotation. For sake of illustration, assume that the sofa is 2m wide and 0.8m deep. We then obtain the following altered object
dimensions when using an AABB instead of an OBB, at different yaw rotation angles (i.e., considering 7-DOF bounding boxes that are
gravity-aligned / parallel to the ground, as in CA-1M / CA-VQA): width → 2.1m and depth → 1.7m with 30→ rotation; width → 1.7m and
depth → 2.1m with 60→ rotation; and width = 0.8m and depth = 2m with 90→ rotation (i.e., “full” rotation resulting in swapped dimensions).
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