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A Theoretical Rank Analysis: Proofs
Lemma A.1 (Rank Increase). Let the logits η ∈ Rkd be low-rank Gaussian distributed η | x ∼ N (µ(x),Σ(x)) = pH|X ,
where the covariance matrix Σ(x) ∈ Rkd×kd has rank rank(Σ(x)) = r. If we define y = g(η), where g = softmaxk, the
rank of the covariance matrix Cov(y) of the pushforward distribution g#pH|X increases under the condition:

rank(Cov(y)) > r ⇐⇒ r < d(k − 1). (21)

Proof. First recall that we use softmaxk(·) to denote that the softmax function is applied row-wise across the k dimension
(i.e. over the number of categories k), after reshaping the input logits η ∈ Rkd to η ∈ Rk×d. More formally:

y:,j = softmax(η:,j), where yij =
eηij∑k
l=1 e

ηlj

, for i = 1, . . . , k, j = 1, . . . , d. (22)

Now let f : Rkd → (0, 1)kd be the composition of softmaxk(η) then flattening y ∈ (0, 1)k×d back to y ∈ (0, 1)kd. The
resulting Jacobian Jf ∈ Rkd×kd of f is a sparse matrix given by:

Jf =


∂y1

∂η1
· · · ∂y1

∂ηkd

...
. . .

...
∂ykd

∂η1
· · · ∂ykd

∂ηkd

 , where
∂yi
∂ηj

̸= 0 if j ≡ i (mod k). (23)

In words, Jf has a total of dk2 non-zero entries, including the diagonal and a checkerboard-like pattern with column-wise
intervals of stride k, caused by the flattening operation.



Intuitively, f non-linearly couples each element in η with k − 1 number of other elements in η to produce y, i.e.
each η:,j ∈ Rk×1 is independently mapped to the (k − 1)-dimensional simplex ∆k−1 via an element-wise softmax, for
j = 1, 2, . . . , d. As a result, we can conclude that rank(Jf ) = d(k − 1).

Considering a Taylor expansion of Cov(y), we know that the first-order term only contributes linearly to the result:

Cov(y) = JfΣ(x)J⊤
f + · · · , and rank(JfΣ(x)J⊤

f ) = min(r, d(k − 1)) = r. (24)

Since f is non-linear, the higher-order terms in the Taylor expansion (and their rank) must be non-zero. Thus, by the rank
subadditivity property: rank(A+B) ≤ rank(A) + rank(B), we conclude that rank(Cov(y)) > r iff r < d(k − 1).

Theorem A.2 (Sublinear Growth of the Effective Rank). Given a low-rank Gaussian covariance matrix Σ(x) ∈ Rkd×kd with
initial rank rank(Σ(x)) = r < d(k− 1). The increase in the effective rank erank(Cov(y)), in the sense of Lemma 4.1, grows
sublinearly with respect to the initial rank r.

Proof. Recall that the rank of Σ(x) ∈ Rkd×kd is by definition given by:

rank(Σ(x)) =

kd∑
i=1

I(σi > 0), where σ1 ≥ σ2 ≥, . . . , σkd ≥ 0 (25)

are the singular values of Σ(x), and I(·) is the indicator function. Since rank(Σ(x)) = r we have σ1 ≥, . . . ,≥ σr > 0.
Given that the non-linear pushforward operation defined in Lemma 4.1 is rank-increasing (as long as r < d(k− 1)), we can

assert that the final rank, rank(Cov(y)) = r1, grows at least linearly w.r.t. the initial rank rank(Σ(x)) = r. This is intuitive
as each non-zero singular value of Σ(x) contributes at least one additional rank increment to rank(Cov(y)).

This holds for the effective rank erank(Cov(y)) if and only if the distribution of singular values of Cov(y), p, is uniform:

erank(Cov(y)) = rank(Cov(y)) ⇐⇒ pi =
1

r1
, for i = 1, 2, . . . , r1, (26)

which is straightforward to show by substituting p into the definition of effective rank (c.f. Definition 4.2):

H(p) = −
r1∑
i=1

1

r1
log

(
1

r1

)
= log r1 =⇒ erank(Cov(y)) = eH(p) = r1 = rank(Cov(y)). (27)

Alternatively, when the singular value distribution p is non-uniform, e.g. skewed, we have that:

σ1 ≫ σ2 ≥, . . . ,≥ σr1 > 0 =⇒ H(p) < log r1 =⇒ erank(Cov(y)) < rank(Cov(y)), (28)

since the uniform is the maximum entropy distribution and H(p) is bounded above by log r1. For a random matrix with
continuous entries and kd > 1, the probability that all its singular values are equal is zero; so the singular value distribution p
is almost surely non-uniform. Thus, since linear growth holds iff p is uniformly distributed (c.f. Eq. (26)), the final effective
rank erank(Cov(y)) = r1 must grow sublinearly w.r.t. the initial rank rank(Σ(x)) = r, concluding the proof.

Remark A.3. One way to intuit this result is by recalling that entropy grows logarithmically with the number of dimensions in
uniform distributions. For non-uniform distributions, the growth of entropy can be slower, depending on how the additional
event (represented by, say, σr+1 > 0 in our case) relates to the existing probabilities p1, p2, . . . , pr.

B Flow Stochastic Segmentation Networks: Proofs
We begin by reviewing autoregressive image models, then proceed to theoretical results and design options for Flow-SSNs.

B.1 Autoregressive Image Models
Autoregressive models factorise joint probability distributions into a product of conditional distributions using the chain rule
of probability. For example, by representing an image y as a sequence of pixels y1, y2, . . . , yT , we can estimate the joint pixel
distribution by maximum likelihood estimation on the parameters of a model:

θ̂MLE = argmax
θ

N∑
i=1

log p(yi;θ), p(yi;θ) =
T∏

t=1

p(yi,t | yi,1, . . . , yi,t−1;θt). (29)

Autoregressive image models [74, 87, 88] can estimate arbitrary joint pixel distributions but are computationally costly to
sample from as each pixel must be generated sequentially. Discrete-time autoregressive Flow-SSNs avoid sequential sampling.



Proposition B.1 (Full Covariance Flow Transformation). Let u = (u1, u2, . . . , ud)
⊤ be a Gaussian random vector with

diagonal covariance N (µ,diag(σ2)). A linear autoregressive model is sufficient to transform u into a new variable η ∈ Rd

with full covariance Σ ∈ Rd×d.

Proof. First recall that autoregressive models can represent any joint distribution as a product of conditionals: p(η; θ) =∏d
i=1 p(ηi | η1, . . . , ηi−1; θ). Define the autoregressive transformation of u into η as follows:

ηi = µi(η1:i−1) + σi(η1:i−1)ui, for i = 1, 2, . . . , d, (30)

where µi(·) and σi(·) are functions of preceding elements η1:i−1, thereby inducing a lower triangular dependency structure
in η. Thus, there exists a lower triangular matrix L ∈ Rd×d such that LL⊤ = Σ (via Cholesky decomposition), and the
autoregressive transformation can be equivalently expressed as a set of linear equations of the form:

ηi =

i−1∑
j=1

Lijuj + Liiui, for i = 1, 2, . . . , d, (31)

where Lij determine the linear dependencies between elements, thereby inducing a full covariance structure for η.

Remark B.2. Kingma et al. [40] undoubtedly recognised this fact, as it was informally mentioned in their exposition. We
provide a simple proof here to make the argument in favour of our proposed approach more rigorous.

B.2 Choosing a Flow & Optimization Objective
The following provides supplementary derivations of the different optimization objectives for training discrete-time Flow-SSNs
outlined in the main paper. Recall the discrete-time Flow-SSN is defined as follows:

p(y | x) =
∫

p(y | η)p(η | x;λ, θ) dη (32)

where p(η | x;λ, θ) = pU |X(u | x;λ) |detJϕ(u)|−1
, and p(y | η) = Cat(y; softmaxk(η)). (33)

We then have to choose a flow to model p(η | x;λ, θ), and for this we revisit affine autoregressive flows, specifically IAFs [40]
and MAFs [61] as they are both simple and flexible enough for our needs. They remain relatively underexplored to date,
and in this work, we combine them with modern autoregressive Transformers to build Flow-SSNs. With that in mind, in the
following subsections, we detail the various design options available for Flow-SSNs.

B.3 Expected Categorical Likelihood: Monte Carlo Estimator
The simplest approach is to use an IAF pIAF(η | x;λ, θ), which is fast to sample form, and use a simple Monte Carlo estimator
of the likelihood in Eq. (32) analogous to a standard SSN:

p(y | x) = Eη∼pIAF(η|x;λ,θ) [p(y | η)] (34)

= Eu∼pU|X(u|x;λ) [p(y | η = ϕ(u; θ))] (35)

≈ 1

M

M∑
i=1

p(y | ϕ(u(i); θ)), u(i)|x ∼ pU |X , (36)

where (x,y) ∼ pdata(x,y) and the flow is parameterised by an autoregressive model with parameters θ. Taking logs, we get:

log p(y | x) ≈ log
1

M

M∑
i=1

p(y | ϕ(u(i); θ)) (37)

= LSE
(
log p(y | ϕ(u(1); θ)) + · · ·+ log p(y | ϕ(u(M); θ))

)
− logM, (38)

where LSE(·) is the log-sum-exp function, and the individual categorical likelihood terms are given by:

log p(y | η = ϕ(u; θ)) = logCat(y; softmaxk(η)) =

k∑
i=1

d∑
j=1

yi,j log softmax(η:,j)i. (39)



Remark B.3. This approach is the most similar to standard SSNs as it uses the same Monte Carlo setup to integrate out the
logits and compute p(y | x). We simply replace the low-rank Gaussian parameterisation with an autoregressive flow that
is still cheap to sample from: an IAF. The approach is attractive in that the majority of the model capacity is allocated to
learning the base distribution pU |X , which only requires a single forward pass to compute. Given the parameters of pU |X , it is
cheap to sample from it and compute the logits η = ϕ(u; θ), as the flow ϕ is lightweight, e.g. a single linear autoregressive
transformation is sufficient (c.f. Proposition 5.1). In practice, it can be beneficial to make ϕ more expressive.

B.4 Dual-Flow: Evidence Lower Bound
An important fact about IAFs is that, although scoring observations is slow and unparallelizable, they can still score their own
samples efficiently since intermediate outputs can be cached when sampling η ∼ pIAF, then reused for scoring the sample.
This opens up various design options for Flow-SSNs, which we explain in greater detail next.

B.4.1 Dual-Flow
We introduce a dual-flow setup comprised of an IAF pIAF(η | x;λ, θ) and an MAF pMAF(η | x; λ̂, θ̂), both defined in logit
space and trained concurrently, such that we maximize a lower bound on log p(y | x):

log p(y | x) = log

∫
p(y | η)pMAF(η | x; λ̂, θ̂) dη (40)

=

∫
p(y | η)pMAF(η | x; λ̂, θ̂)p

IAF(η | x;λ, θ)
pIAF(η | x;λ, θ) dη (41)

≥ Eη∼pIAF(η|x;λ,θ)

[
log

p(y | η)pMAF(η | x; λ̂, θ̂)
pIAF(η | x;λ, θ)

]
(42)

= Eη∼pIAF(η|x;λ,θ) [log p(y | η)]−DKL

(
pIAF ∥ pMAF) . (43)

where (x,y) ∼ pdata(x,y). There is no general closed-form solution to this KL term, so we approximate it using samples:

DKL

(
pIAF ∥ pMAF) ≈ 1

M

M∑
i=1

log
pIAF(η(i) | x;λ, θ)
pMAF(η(i) | x; λ̂, θ̂)

, η(i)|x ∼ pIAF, (44)

which is cheap since sampling from pIAF is parallelizable and computing the base distribution pU |X only requires a single
forward pass of x. Furthermore, scoring pIAF’s samples under pMAF is also cheap since scoring in MAFs is parallelizable.

In practice, we recommend using a different (unbiased) estimator which has lower variance, proposed by Schulman [75]:

DKL

(
pIAF ∥ pMAF) ≈ 1

M

M∑
i=1

expm1(r)− r, r := log
pIAF(η(i) | x;λ, θ)
pMAF(η(i) | x; λ̂, θ̂)

, η(i)|x ∼ pIAF. (45)

Remark B.4. This combination of IAFs and MAFs is reminiscent of probability density distillation [60], a student-teacher
distillation technique used in audio synthesis models, wherein a pre-trained MAF is fixed as a teacher, and an IAF student
learns to match it. In our setup, both flow models are trained concurrently to maximise a bespoke lower bound for stochastic
segmentation tasks. Furthermore, it is possible for pIAF and pMAF to share the base distribution parameters λ.

B.4.2 Improper Uniform Prior
Alternatively to the above, we can replace pMAF with an improper uniform prior p such that:

p(η) = const, ∀η =⇒ DKL

(
pIAF ∥ p

)
= EpIAF(η|x;λ,θ)

[
log

pIAF(η | x;λ, θ)
const

]
(46)

= −H(pIAF)− log const, (47)

which, after dropping the constant term w.r.t the model parameters, yields the objective:

log p(y | x) ≥ Eη∼pIAF(η|x;λ,θ) [log p(y | η)] + βH(pIAF), (48)

with a weighting hyperparameter β > 0. Maximising H(pIAF) prevents the model from collapsing to a deterministic one. The
special case where β is set to 0 makes this objective equivalent to the expected categorical likelihood above.



Proposition B.5 (IAF Entropy Estimator). The entropy H(pIAF) can be efficiently estimated in parallel via Monte Carlo
sampling u(i)|x ∼ pU |X using the following formula:

H(pIAF) ≈ H(pU |X)− 1

M

M∑
i=1

log
∣∣∣detJϕ−1(ϕ(u(i); θ))

∣∣∣ , u(i)|x ∼ pU |X . (49)

Proof. We simply start with the definition of differential entropy, then use a change-of-variables and simplify:

H(pIAF) = −Eη∼pIAF(η|x;λ,θ)
[
log pIAF(η | x;λ, θ)

]
(50)

= −
∫

pIAF(η | x;λ, θ)
[
log pU |X(ϕ−1(η; θ) | x;λ) + log

∣∣detJϕ−1(η)
∣∣ ] dη (51)

= −
∫

pU |X(u | x;λ)
[
log pU |X(u | x;λ) + log

∣∣detJϕ−1(ϕ(u; θ))
∣∣ ] du (52)

= H(pU |X)− Eu∼pU|X(u|x;λ)
[
log

∣∣detJϕ−1(ϕ(u; θ))
∣∣] , (53)

≈ H(pU |X)− 1

M

M∑
i=1

log
∣∣∣detJϕ−1(ϕ(u(i); θ))

∣∣∣ , u(i)|x ∼ pU |X , (54)

which is what we wanted to show.

Remark B.6. The entropy H(pU |X) is available in closed-form for typical base distributions (e.g. Gaussian). Computing
pU |X(u | x;λ) only requires a single forward pass, which is important as it comprises the majority of the model parameters.
The flow component ϕ(·) is lightweight, since a single (linear) layer is sufficient (c.f. Proposition 5.1). Lastly, recall that
autoregressive flows admit a lower triangular Jacobian by design, and as such, their log absolute determinant simplifies to a
sum of the diagonal elements, which is easy to compute.

B.5 Logit Bijections
For bijective logit mappings y = g(η) with tractable Jacobians determinants, the likelihood term p(y | x) in Flow-SSN
models can be evaluated directly using the following change-of-variables formula:

p(y | x) = pU |X((ϕ ◦ g)−1(y) | x;λ)
∣∣detJϕ−1(g−1(y))

∣∣ ∣∣detJg−1(y)
∣∣ .

However, the above does not hold when g(·) is the softmax function, as it is not bijective. TensorFlow Probability [1] provides
the somewhat underused function tfp.bijectors.SoftmaxCentered, which is an alternative bijective softmax
transformation that we can use here, albeit at the cost of having to dequantise y. We must also train with k+1 classes, where a
newly introduced dummy class acts as a pivot and facilitates the bijective property of the function. Relatedly, De Sousa Ribeiro
et al. [17], Monteiro et al. [56] have also recently used this transformation to train discrete causal mechanisms.

C Evaluation Metrics
Throughout this work, we use the following evaluation metrics standard for stochastic segmentation tasks.

Dice Similarity Coefficient. For two label maps y, ŷ of dimension h× w, the Dice Similarity Coefficient (DSC) is defined
as follows:

DSC(y, ŷ) =
2|y ∩ ŷ|
|y|+ |ŷ| , where |y ∩ ŷ| =

h∑
i=1

w∑
j=1

yi,j × ŷi,j , and |y| =
h∑

i=1

w∑
j=1

yi,j . (55)

Intersection over Union. Intersection over Union (IoU) is a similar widely used segmentation metric defined as follows:

IoU(y, ŷ) =
|y ∩ ŷ|
|y ∪ ŷ| , where |y ∪ ŷ| = |y|+ |ŷ| − |y ∩ ŷ|. (56)

Compared with DSC, IoU is generally a less forgiving metric since it does not weight the overlap as strongly, thereby penalising
mismatches more strongly.



Generalised Energy Distance. We use Generalised Energy Distance (GED) to compare the quality of samples from the
model with the ground truth labels. Independent samples ŷ, ŷ′ iid∼ pmodel are drawn from the predictive model distribution
pmodel whereas the multiple ground truth annotations y,y′ ∼ pdata are from the data distribution pdata, then:

D2
GED(pdata, pmodel) = 2Ey∼pdata,ŷ∼pmodel [d(y, ŷ)]− Eŷ,ŷ′∼pmodel [d(ŷ, ŷ

′)]− Ey,y′∼pdata [d(y,y
′)]. (57)

We follow Kohl et al. [43], Monteiro et al. [55] by using the distance function d(y, ŷ) = 1− IoU(y, ŷ), which is a metric, and
implies D2

GED is also a metric. Lower GED indicates better alignment between the predictive and ground truth distributions.
The sample diversity Eŷ,ŷ′∼pmodel [d(ŷ, ŷ

′)] is also a quantity of interest, as it measures the average distance between pairs of
samples from the predictive distribution, and provides a measure of variability in our samples. We note that diversity is only
contextually relevant, as high diversity alone can be trivially achieved with random noise as a model.

Hungarian-matched IoU. We also use Hungarian-matched IoU (HM-IoU) to compare samples between the ground truth
and predictive distributions. HM-IoU uses the Hungarian algorithm to find an optimal assignment between the two sets of
samples: {y1,y2, . . . ,yN} ∼ pdata and {ŷ1, ŷ2, . . . , ŷM} iid∼ pmodel, then using 1− IoU as the cost matrix for solving a linear
sum assignment problem [44]. HM-IoU can be viewed as more robust across sets of ground truth and predictive samples
compared to the GED, which can suffer from inflated scores if the predictive samples are very diverse.

D Implementation Details
D.1 Training Setup & Hyperparameters
In this section, we provide the setup and hyperparameters we used to train our Flow-SSN models on the medical datasets.
Our implementation is based in PyTorch [64]. As shown in Table 3, we use a UNet [19, 72] to parameterise the base
distribution of our Flow-SSN (i.e. Prior Network). To parameterise the flow transformation itself (i.e. Flow Network), we use
an autoregressive Transformer for the discrete-time Flow-SSN variant and a UNet for the continuous-time variant. For data
augmentation on LIDC-IDRI, we used random 90 degree rotations and vertical/horizontal flips with 0.5 probability. For data
augmentation on REFUGE-MultiRater, we used random vertical flips with 0.5 probability; random rotations in the range of
[-20, 20] degrees, random resized cropping to 256x256 with scale [0.9, 1.1], and applied color jitter of 0.3 to the images.

The remaining hyperparameters we used are largely equal for both datasets, as reasonable initial values performed well
enough; we did not perform extensive hyperparameter tuning for each dataset. For the continuous-time Flow-SSN, 8 ODE
solving steps (Euler method in torchdiffeq [13]) were used on the validation set throughout training for model selection.
In all cases, the best checkpoint was selected based on the lowest GED achieved on the validation set during training. The final
model artefact we use for evaluation is an exponential moving average (EMA) of the model parameters.

Table 3. Training hyperparameters used across all experiments.

LIDC-IDRI REFUGE-MultiRater
CONFIG Flow-SSN∆ Flow-SSN∞ Flow-SSN∆ Flow-SSN∞

Prior Network UNet UNet UNet UNet
Flow Network Transformer UNet Transformer UNet
Optimiser AdamW AdamW AdamW AdamW
Batch Size 16 16 16 16
Learning Rate 10−4 10−4 10−4 10−4

LR Warmup Linear 2K Linear 2K Linear 1K Linear 1K
Weight Decay 10−4 10−4 10−4 10−4

EMA Rate 0.9999 0.9999 0.999 0.999
Max Epochs 1001 1001 1001 1001
Eval Freq. 16 16 50 50
MC Samples (train) 16 1 32 1
MC Samples (eval) 16 16 16 16
Prior Dist. Gaussian Gaussian Gaussian Gaussian



D.2 UNet Architecture
As mentioned in the main text, we reimplemented a streamlined version of Dhariwal and Nichol [19]’s UNet, which uses
fewer attention layers. Recall that LIDC-IDRI images are grayscale, whereas REFUGE images are RGB. To parameterise
a Flow-SSN prior, the UNet outputs a mean and variance per output pixel, representing the ‘initial guess’ distribution as a
diagonal Gaussian, to be later refined by the choice of flow. The prior’s mean can be optionally initialised with a pre-trained
network and then fine-tuned alongside the flow network. In our case, we train everything end-to-end for simplicity and find
that fixing the prior variance to, e.g. 1, can also help stabilise training in some instances. Table 4 shows the remaining details,
including input and output shapes for both the prior and flow networks.

Table 4. UNet hyperparameters used for parameterising both the base distribution (Prior) and the flows in our Flow-SSN models. We use
(∆) and (∞) to denote relation to the discrete and continuous-time version of the associated Flow-SSN.

LIDC-IDRI REFUGE-MultiRater
CONFIG Prior (∆,∞) Flow (∞) Prior (∆,∞) Flow (∞)

Input Shape (1, 128, 128) (2, 128, 128) (3, 256, 256) (2, 256, 256)
Model Channels 32 16 32 32
Output Channels 4 2 4 2
Residual Blocks 1 1 2 1
Dropout 0.1 0.1 0.1 0.1
Channel Multipliers [1, 2, 4, 8] [1, 1, 1] [1, 2, 2, 4, 6] [1, 1, 1, 1]
Attention Resolution [16] [16] [16] [16]
Num. Heads 1 1 1 1
Head Channels 64 16 64 32
#Parameters 14.4M 150K 14.6M 787K

D.3 Autoregressive Transformer Architecture
To parameterise the discrete-time autoregressive Flow-SSN, we require a lightweight autoregressive model. The challenge is
that our flow lives in pixel-space, so autoregressively predicting each pixel can become computationally expensive for large
datasets. To overcome this obstacle, we propose two things. The first is that we use an IAF [40] defined in in pixel-space
and train under the expected likelihood objective in Eq. (14), which avoids pixel-wise sequential likelihood evaluation and
enables fast, one-pass sampling at inference time. Recall that MAFs [61] are equally fast to train as likelihood evaluation
can be parallelised, but they still require sequential autoregressive sampling at inference time. The second is that we use an
autoregressive Transformer to parameterise the flow, with image strips/patches of, e.g., size (1,8) or (8,8) pixels to reduce
memory requirements. To reconstruct the patches back to the output size, we simply use a transposed convolution. Grouping
pixels this way induces a block covariance structure in pixel space, but as long as the strips/patches are small relative to
the full image size, the maximum attainable covariance rank remains high (i.e. in the hundreds/thousands for real images).
Furthermore, since Flow-SSNs model pixel covariance in logit space and transform the learned distribution by a non-linear
transfer function (softmax), there is a sublinear increase in rank we can benefit from (c.f. theoretical results in Appendix A).

In summary, and perhaps surprisingly, we find that the above combination of design choices works well provided we use
enough MC samples during training, e.g. ≥ 8, otherwise, the model can collapse to a near-deterministic state (c.f. Fig. 11).
It is worth noting that we briefly experimented with a shallow PixelCNN [74, 88, 88] to parameterise the flow instead of
an autoregressive Transformer, but did not have as much success. As shown in Table 5, the final architecture setup for a
discrete-time autoregressive Flow-SSN uses just 1 autoregressive flow transformation parameterised by a single Transformer
layer! As proven in Appendix A, a single autoregressive transformation is sufficient to transform the diagonal Gaussian prior
into a highly expressive full covariance. We confirm this works well in practice on both toy and real medical imaging datasets.



Table 5. Autoregressive Transformer hyperparameters used for our discrete-time autoregressive Flow-SSNs.

LIDC-IDRI REFUGE-MultiRater
CONFIG Flow (∆) Flow (∆)

Input Shape (2, 128, 128) (2, 256, 256)
Num. Flows 1 1
Flow Type IAF IAF
Output Channels 4 4
Embed Dim 64 128
MLP Width 256 512
Patch Size (1, 8) (8, 8)
Patchify Conv Conv
Unpatchify ConvTranspose ConvTranspose
Num. Blocks 1 2
Num. Heads 1 1
Pos Embed Init N (0, 0.02) N (0, 0.02)
Dropout 0.1 0.1
Activation GELU GELU
#Parameters 345K 0.92M

E Extra Results
E.1 Sampling Efficiency & Additional Baselines
As reported in Table 6, our method is ≈10× more efficient than CCDM [92], thanks to most of the model parameters being
in the flow’s prior (i.e. base/source distribution), which only requires a single forward pass to start the sampling chain.
Afterwards, only the flow network is needed to solve the ODE, and it has only 150K parameters5. The advantage of our model
translates to any other diffusion-based segmentation model that dedicates all its model capacity to learning the score/velocity
field [3, 66, 89, 92]. That said, we expect that using large models for both the prior and the flow would improve performance
even further; though we argue that the latter may not be necessary if the prior is expressive enough, e.g. a foundation model.
Table 7 reports further baseline comparisons against recent SOTA methods; Flow-SSN outperforms all previous methods.

Table 6. Comparing Flow-SSN sampling efficiency against CCDM (see Figure 5 in [92]).

CCDM [92] Flow-SSN
Steps D2

GED(16) ↓ HM-IoU ↑ FLOPS ↓ D2
GED(16) ↓ HM-IoU ↑ FLOPS ↓

1 - - - 0.240±.002 0.879±.000 12G
50 ≃ 0.34±N/A ≃ 0.55±N/A 365G 0.210±.002 0.873±.000 51G
250 0.212±.002 0.623±.002 1.83T 0.207±.000 0.873±.001 207G

Table 7. Additional comparisons of Flow-SSN against recent SOTA methods on LIDC-IDRI.

METHOD Pub. Venue D2
GED(16) ↓ HM-IoU ↑ #Param

Tyche [67] CVPR’24 0.400±.010 - 1.7M
CCDM [92] ICCV’23 0.212±.002 0.623±.002 9M
MoSE [25] ICLR’23 0.218±.003 0.624±.004 42M
CIMD [66] CVPR’23 0.234±.005 0.587±.001 24M

Flow-SSN∞ ICCV’25 0.207±.000 0.873±.001 14M

5For 1-step we use a discrete-time inverse autoregressive Flow-SSN



E.2 Ablation Study: Increasing the Assumed Rank
We first assess the scalability of standard SSNs by ablating an increase in the assumed rank using a replication of Monteiro
et al. [55]’s setup. We observe (Figure 10) that SSNs tend to collapse to deterministic models even under mild increases in the
assumed rank, which shows that a different approach is needed to capture higher-order interactions between pixels.
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Figure 10. Scalability ablation study of SSNs on LIDC in terms of the assumed rank. The results show that mild increases in the
assumed rank can cause SSNs to collapse into a near-deterministic state. This warrants a new approach for estimating high-rank covariances.

E.3 Ablation Study: Number of Monte Carlo Samples
As shown in Figure 11, we find that multiple MC samples are needed to properly learn the underlying distribution over outputs
when using a discrete-time inverse autoregressive Flow-SSN. With only 1 MC sample, the model enters the near-deterministic
regime, and increasing the number of MC samples provides diminishing returns in terms of improved performance. We
consider further improving the training stability of IAFs at scale, possibly borrowing tricks from modern MAFs and coupling
flows [28, 83, 94], to be fertile ground for future work. The payoff in efficiency is significant as sampling becomes parallelizable.
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Figure 11. Ablation analysis of the number of Monte Carlo (MC) samples needed for training. We look at {1, 8, 16, 32, 64} used
for training a discrete-time autoregressive Flow-SSN with the objective in Equation (14). The above results were obtained using the
REFUGE-MultiRater dataset, and performance on the validation set is shown throughout training.



E.4 Qualitative Results: LIDC-IDRI

Figure 12. Extra qualitative results on LIDC-IDRI using our continuous-time Flow-SSN model. (Cols. 1-4) Multiple ground truth
segmentations from experts; (Cols. 5-8) Non-cherry-picked random samples from our model; (Cols. 9, 10) The mean prediction and
per-pixel uncertainty map. In all cases, 100 MC samples and 50 ODE solving steps (Euler method) were used for evaluation.
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Figure 13. Qualitative comparison of Flow-SSN against previous methods on LIDC-IDRI. We used the same images as CIMD [66] for
fair comparisons. (Col. 1) Input images for segmentation; (Cols. 2-5) Ground truth annotations from multiple experts (i.e. four total in this
case {y1,y2,y3,y4}); (Cols. 6-9) Random samples from our reproduced SSN [55] model; (Cols. 10-13) Random samples taken from
CIMD [66], a diffusion-based segmentation model; (Cols. 14-17) Random samples from our (continuous-time) Flow-SSN model.



E.5 Qualitative Results: REFUGE-MultiRater

Figure 14. Extra qualitative results on REFUGE-MultiRater using our discrete-time autoregressive Flow-SSN model. (Cols. 1-4)
Multiple ground truth segmentations from experts; in each case, four segmentations were randomly chosen out of the seven available in total;
(Cols. 5-8) Non-cherry-picked random samples from our discrete-time autoregressive Flow-SSN model; (Cols. 9, 10) The mean prediction
and per-pixel uncertainty map. In all cases, 512 Monte Carlo samples were used for performing the evaluation.


