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9. Transformer block feature extractor

9.1. Group features through k-nearest neighbours:

Formally, we constructed a k-NN graph on P with the graph
including a self-loop to point-level features:

N (pi) = KNN(P, ||pi → pj ||22),pi,pj ↑ P,

f →i = [(fj → fi), fi]j↑N (pi) ↑ Rk↓2din ,
(7)

where KNN(·) is the k-NN function, [·, ·] is concatena-
tion, k is the hyperparameter of the k-NN graph, N (pi) is
the set of neighbours of pi, and f →i is the point feature aug-
mented with local contextual information.

9.2. Learned relative positional encoding:

To encode spatial configurations per point cloud neighbour-
hood, we incorporated positional embeddings, hi such that:

hi ↑ Rk↓dh = ωpos([pi → pj ]j↑N (pi)), (8)

where ωpos is an MLP and dh is the output channel dimen-
sion of ωpos. The features were then further augmented with
this positional encoding to give:

f →→i = [f →i ,hi]. (9)

Thus, we obtained a new feature set F→→ ↑
RN↓k↓(2din+dh) = {f →→i }Ni=1.

9.3. Attention on the augmented features:

The resulting features, F→→, were then fed into a transformer
with EdgeConv as the query operation. Recall that Edge-
Conv [55] computes graph features for each point using the
following equation:

ei ↑ Rde = maxj↑N (pi)(ωedge(pi,pj → pi)), (10)

where ωedge is an MLP with output dimension de. The F→→

were then transformed using attention [51]:

Q ↑ RN↓dk = EdgeConv (F→→)Wq

K ↑ R(N↓k)↓dk = Flatten (F→→)Wk

V ↑ R(N↓k)↓dv = Flatten (F→→)Wv,

(11)

where Wq ↑ Rde↓dk , Wk ↑ R(2din+dh)↓dk and Wv ↑
R(2din+dh)↓dv are learnable weight matrices. The final
point-level output features from the transformer block were
then given by:

zi ↑ RN↓dv = qi(softmax(ki)
Tvi). (12)

For all experiments, we used two transformer layers such
that the final feature vector for each point was of size 256.

10. CurveNet adaptation

CurveNet [59] uses sampling and grouping. Our only adap-
tation to CurveNet was to use the same number of sampled
points as input into the farthest point sampling algorithm.
We kept everything else the same as the original paper. We
replaced the original adaptive max, adaptive mean pooling,
and the classification head with MIL pooling. The final fea-
ture vector for each point was 1024 in size.

11. PointMLP adaptation

Similar to CurveNet, PointMLP [35] employs sampling and
grouping techniques. We adapted PointMLPElite by simply
changing the reducers from 2 to 1 to avoid point sampling.
We kept everything else the same as the original paper. We
replaced the original adaptive max, adaptive mean pooling,
and the classification head with MIL pooling. The final fea-
ture vector for each point was 256 in size.

12. Interpretability metrics

AOPCR does not require instance labels, whereas
NDCG@n does. AOPCR works by removing the most im-
portant instances in sequence and observing the impact on
prediction accuracy. The faster the prediction declines, the
better the ordering, as the most influential instances are re-
moved earlier. When point clouds are annotated, NDCG@n
evaluates how closely the model’s interpretability ranking
matches the true order. It rewards rankings that priori-
tise relevant instances, with higher scores indicating better
alignment and interpretability.

13. Datasets

13.1. IntrA

IntrA is an open source dataset of 3D intracranial aneurysm
[63]. The task is to classify blood vessels as healthy or
aneurysmal. There are a total of 1909 blood vessel seg-
ments, including 1694 healthy vessel segments and 215
aneurysm segments for diagnostic purposes. 116 of the
aneurysm segments are expertly annotated. We use IntrA to
evaluate interpretability, classification, and segmentation.

13.2. Red Blood Cell

We used another dataset of 3D red blood cells (RBC; [45])
for classification. This dataset includes 825 3D red blood
cells imaged using confocal microscopy, grouped into nine
expertly annotated shape classes. Blood samples were col-
lected from healthy donors and patients using finger-prick



Figure 8. Rendered point clouds from the ATLAS-1 dataset.



blood sampling. To induce transitions in RBC shapes, the
blood cells of five healthy donors were treated with NaCl
solutions of varying concentrations to create different RBC
shapes. Specific shape classes were expertly annotated ac-
cording to particular motifs. Thus, similar to IntrA, RBC
was suitable for evaluating interpretability by the ability
to identify these motifs. Segmentation masks are publicly
available. We converted the segmentation to mesh objects
using marching cubes with Laplacian smoothing, and then
sampled points from the vertices of these mesh objects. We
have also made these point clouds available.

13.3. ModelNet40

ModelNet40 [58] is the de-facto benchmark for point cloud
classification containing 9,843 training and 2,468 testing
meshed CAD models belonging to 40 different object
classes.

13.4. ScanObjectNN

ScanObjectNN [50] is a point cloud benchmark compris-
ing 15,000 objects categorised into 15 classes, with 2,902
unique real-world object instances. The presence of back-
ground clutter, noise, and occlusions makes this benchmark
particularly challenging for existing point cloud analysis
methods. For this paper, we used the hardest perturbed vari-
ant (PB T50 RS) of ScanObjectNN.

14. ATLAS-1

ATLAS-1 is a new dataset of 3D drug-treated cancer cells
in physiologically relevant environments. The dataset com-
prises 1500 single-cell point clouds, derived from WM266-
4 human melanoma cells embedded in tissue-like collagen
matrices and imaged in 3D using oblique-plane light-sheet
microscopy. This is a subset of the data used in De Vries
et al. [9]. Cells were treated with one of the following con-
ditions:
• Nocodazole (500 cells): Microtubule inhibitor, causing

cells to adopt a round morphology.
• Blebbistatin (500 cells): Non-Muscle-Myosin II in-

hibitor, leading to elongated, spindle-like cell shapes.
• Control (500 cells): Untreated cells exhibiting a range of

normal human melanoma morphological variability.
The 3D point clouds were generated via the following

pipeline: (1) automatic segmentation of individual cells, (2)
surface reconstruction using the marching cubes algorithm
[33] with Laplacian smoothing, and (3) point cloud sam-
pling of 1024 points per cell from the reconstructed sur-
face mesh. Figure 8 shows the point cloud renderings of the
ATLAS-1 dataset.

14.1. Dataset availability and usage

The dataset is available under the Creative Commons Attri-
bution 4.0 (CC-BY 4.0) license. This dataset can be used

for:
• Benchmarking point cloud classification models on real-

world biological data.
• Studying the 3D morphological effects of small-molecule

inhibitors on cancer cells.
A metadata file (‘metadata.csv‘) accompanies the

dataset, providing labels and experimental details. Addi-
tionally, we provide Python scripts for loading and visualis-
ing the dataset.

The dataset, along with download instructions and doc-
umentation, is available through the project page: https:
//Sentinal4D.github.io/PointMIL

15. Trainig splits

For IntrA, RBC, and ATLAS-1, we used a five-fold cross-
validation and reported the average test metrics across folds.
For ModelNet40 and ScanObjectNN, we utilised the pro-
vided train and test splits and reported the test results.

16. Visual interpretation examples

Figure 9 shows additional interpretability visualisations on
ModelNet40.

17. Comparison between backbones

Figure 10 presents the interpretability results for different
backbones when classifying a Bed with Additive pooling
(top row) and a Plant with Conjunctive pooling (middle
row) from the ModelNet40 dataset. The perturbation curves
are shown in the bottom row. Interestingly, DGCNN, Cur-
veNet, PointMLP, and Transformer backbones consistently
highlight similar regions of importance on the Bed, particu-
larly focusing on the frame and headboard of the bed, which
are key features distinguishing it from other objects. All
backbones focussed on the leaves in the Plant as opposed
to the pot. This consistency across the backbones demon-
strates the robustness of POINTMIL in identifying informa-
tive regions. Additionally, the agreement among backbones
suggests that POINTMIL effectively leverages the feature
representations generated by each model, ensuring the in-
terpretability results are meaningful and aligned with the
task.

18. Additional results

This section contains additional results of individual pool-
ing methods.

18.1. Interpretability

Tables 3 show the IntrA interpretability results for each
of the pooling methods using the Transformer backbone,
showing the effect of contextual attention. The mean and
standard deviations on the test sets across the five folds are
shown.



Figure 9. Examples of POINTMIL interpretations for correctly classified shapes from ModelNet40.

Figure 10. Interpretability of POINTMIL with different backbones
on an example Bed (top row) and Plant (middle row) from Mod-
elNet40. Perturbation curves are shown in the bottom row.

18.2. Assessing misclassifications

Finally, we demonstrated how POINTMIL could be used to
assess where the model went wrong. For example, Figure
11 shows example confusion plots in which the attention of
the predicted class is shown in red. Interestingly, for classi-
fying plants, the model only focused on the plant, although
when classifying flower pots, the model focused on both the
flower and the pot.

Table 3. Additional POINTMIL interpretability results on IntrA
using the transformer backbone. We also show the effect of the
best contextual attention for each attention-based method.

Model NDCG@n AOPCR

Additive 0.6130.033 18.1084.374

Additive + context 12 0.6080.035 18.1623.013

Attention 0.4260.030 10.3361.065

Attention + context 12 0.5390.019 14.5411.821

Conjunctive 0.5920.018 12.5262.960

Conjunctive + context 12 0.6100.024 16.3055.859

Instance 0.5870.022 16.1663.794

Figure 11. Interpretability visualisations of incorrect classifica-
tions from POINTMIL with Transformer backbone on Model-
Net40.



19. Robustness to noise

Similar to the methods described by Xiang et al. [59] and
Yan et al. [61], we assessed the robustness of POINTMIL
to noisy inputs. Specifically, we measured the F1 score
of models trained on clean (raw) inputs when subjected to
noisy inputs during inference. This approach allowed us
to evaluate the model’s ability to maintain performance in
the presence of input perturbations. The F1 score (left) and
the mACC (right) is plotted against the number of noisy
points introduced during inference for different POINT-
MIL methods with the DGCNN backbone and the orig-
inal DGCNN model in Figure 12. POINTMIL methods
demonstrate higher robustness to noise compared to base-
line models, with Additive and Conjunctive main-
taining consistently higher F1 and mACC scores than the
original DGCNN without MIL.

Figure 12. Robustness evaluation of models to noisy inputs.
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