
Reusing Computation in Text-to-Image Diffusion
for Efficient Generation of Image Sets

Supplementary Material

A. Further Method Details
We provide pseudocode for our hierarchical diffusion algo-
rithm. Our inputs are as follows: ω is a hyperparameter
controlling the tradeoff between savings and quality, K is
the total number of diffusion steps, C is our set of clusters
obtained through agglomerative clustering, Cscores are the
corresponding cscores for each cluster in C, and Y is our
set of all text prompts. The additional variables in line 18
are standard diffusion variables: ak and bk are scheduler
coefficients, εω is the diffusion model, and ϑk→1 is a time-
step-dependent standard deviation. Note, this algorithm as-
sumes that ω → maxc(cscore) otherwise a dummy parent
node is required above the root node with a corresponding
cscore > ω . Our method returns the image from step K for
each leaf cluster containing an individual prompt.

Algorithm 1 Hierarchical Diffusion.
1: Inputs: ω,K,C,Cscores, Y
2: Let ϖ(k) = ω ·

(
1↑ k

K

)
assign scores to each diffusion

step k ↓ 1...K s.t. the scores of the K steps are evenly
spaced over the interval [ω, 0].

3: for k in 1...K do:
4: Ck ↔ []
5: for y in Y do:
6: c↑ = argmin

c↓C
cscore s.t. [Parent(c)]score

↗ ϖ(k)↘

y ↓ c
7: if c↑ not in Ck then
8: Ck.append(c↑)
9: end if

10: end for
11: for c in Ck do
12: if k==1 then
13: xc

k→1 ≃ N(0, I)
14: else
15: xc

k→1 ↔ xParent(c)
k→1

16: end if
17: ȳ = mean(y : y ↓ c)
18: xc

k ≃ N
(
akxc

k→1 ↑ bkεω(xc
k→1; k ↑ 1, ȳ),ϑ2

k→1I
)

19: end for
20: end for
21: return {x{y}

K : y ↓ Y }

B. Additional Experiments
Experiments on Additional Models. Due to the coarse-
to-fine generation properties exhibited by models condi-

tioned on a text-image prior, our approach works best on
the Kandinsky and Karlo models which are trained in this
manner (See Fig. 4). However, we can still achieve sav-
ings using more standard models such as SD 1.5 and models
using the more modern DiT architecture and Flow Match-
ing scheduler such as FLUX. While these models gener-
ate high frequency details earlier on in the diffusion pro-
cess and thus leave less room for shared compute (see Fig.
2), we still achieve moderate savings over standard diffu-
sion inference. For comparable quality results (better VQA
scores in ⇐ 50% of the samples), we save up to 28.25% and
23.73% on compute when using SD 1.5 and FLUX, respec-
tively. We report results for FLUX on the Style Variations
dataset. SD 1.5 results are reported in the table below for
all datasets.

Model Dataset GenAI B. Prompt T. Style V. Animals

SD 1.5 Savings → 10.4% 28.25% 23.55% 11.70%
Win % → 48% 50% 49% 50%

Diversity of Generations. Examining sample generations
from both our approach and standard diffusion in Figures 1
and 6, we observe that our generations qualitatively display
comparable diversity to the results from standard diffusion.
Since our approach leverages similarities across prompts to
save compute in the generation process, when used at small
scales, our generations can exhibit high similarity between
examples (see Fig. 8). However, as we increase the size
of our datasets such as with the GenAI Bench or Prompt
Templates datasets, our diversity significantly increases. To
quantitatively evaluate generation diversity, we randomly
sample 100 images from each generated dataset and com-
pute the CLIP cosine similarity between all possible pairs.
The reported result is the mean similarity. On larger datasets
(GenAI Bench, Prompt Templates, and Animals which all
have ↗ 500 examples), our method achieves comparable
diversity to the standard approach. While our results on
the Style Variations dataset are less diverse, this is expected
since the dataset contains only 100 examples and the highly
structured and similar prompts naturally lend themselves to
less diverse generations.

Dataset GenAI B. Prompt T. Style V. Animals

Std. CLIP Diversity ↑ 0.6082 0.6508 0.8071 0.6652
Our CLIP Diversity ↑ 0.6027 0.6493 0.8374 0.6552

Visualization of Mean Embedding. We analyze the mean
cluster embedding by using it to guide image generation.



Figure 10. De-noised mean embedding (left) and its children using
the Kandinsky model.

As we can see in Fig. 10 (zoom in for details), even though
this embedding (left) is not associated with any particular
prompt, it yields an image corresponding to a reasonable
visual mixture of its children. In practice, this “mean im-
age” is never generated (fully denoised) – we show it here
as a tool to visualize the semantics of that embedding.


	Introduction
	Related Work
	Preliminaries: Text-to-Image Diffusion
	Method
	Experiments
	Quantitative Evaluation
	Qualitative Comparisons
	Ablations
	Applications
	Limitations and Future Work

	Conclusion
	Further Method Details
	Additional Experiments

