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A. Derivation of the SeeKer optimization objective
We train the SeeKer model by minimizing the sequence likelihood (6) that boils down to minimizing the Mahalanobis
distance between the observed keypoint Xt,n and the multivariate normal distribution with parameters µθ and Σθ, alongside
a regularization term. The step-by-step derivation goes as follows:
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In practice, our main model used diagonal covariance, Σ = σI which yields:
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B. Architectures of autoreregressive density estimators
B.1. Causal fully connected model
Causality constraints can be effectively incorporated into deep fully connected models by strategically masking weight ma-
trices [4, 21]. Given an input vector x of size T × N × D (e.g. a flattened matrix X containing a skeleton sequence), we
define the causal fully connected layer (C-FCl) as:

C-FCl(x) = (W ⊙M) · x+ b. (16)

The mask M enforces causality by setting weights that correspond to current and subsequent input dimensions to zero. By
stacking multiple C-FCl layers, we can construct a deep causal fully connected model (C-FC). Assuming L hidden layers,
we can express the C-FC with the following equations:

h0 = x (17)
hl = g((Wl ⊙Ml)hl−1 + bl), l = {1, . . . L} (18)

µ,σ = (Wo ⊙Mo)hL + bo (19)

Here, g is some non-linear activation function, such as ReLU. We mask the weights of intermediate layers l with blockwise
lower triangular matrices Ml:

Ml
i,j =

{
1, if ⌊j/D⌋ ≤ ⌊i/D⌋
0, otherwise

(20)

ensuring that the elements of each keypoint are still codependent. The mask of the output layer Mo is an upper diagonal

Mo
i,j =

{
1, if ⌊j/D⌋ > ⌊i/D⌋
0, otherwise,

(21)



to ensure independent predictions, e.g. computation without direct influence from its own current and all succeeding repre-
sentation. We duplicate the mask in the output layer since we output two values for each input, e.g. µ and Σ. For the main
experiments that are on the keypoint granularity level, we use D = 2, and for the experiments on the skeleton granularity
level D = N ·T = 36 (Table 5). Finally, to ensure that all keypoints contribute equally, the hidden layer dimensions must be
a multiple of the input dimension. This guarantees a balanced flow of information across all keypoints during processing.

Figure 8 shows a minimal example of a causal fully-connected model. For example, the predicted parameters of distribu-
tion under which the keypoint K2 (red) should be probable depends on the keypoint K1 (blue) as highlighted with red weights
(see Figure 3 in the main text). To maintain clarity, keypoints of preceding skeletons and bias terms bl are omitted from the
visualization.
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Figure 8. A minimal example of the causal deep fully connected model. Here we causally predict parameters of the distribution for target
keypoint K2 with respect to the preceding keypoint K1 and another target keypoint K3 with respect to preceding K1 and K2. We also show
examples of masks that ensure causality.

B.2. Causal transformer
Transformer decoder with causal self-attention layers [7, 51] is an alternative architecture that admits autoregressive fac-
torization by construction. We briefly review the causal self-attention layer and analyse its shortcomings in the context of
skeleton sequences.

The causal self-attention layer (C-SA) processes each token in a sequence X by attending only to the preceding tokens.
In the case of skeleton keypoint sequences, the corresponding input is an L× d matrix that collects L d-dimensional tokens.
This transformation is parametrized by three learnable projection matrices, Wq,Wk and Wv which generate the query, key,
and value representations, respectively, as follows:
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Here, σ represents the row-wise softmax function, while the mask M ensures causality by not attending the future tokens in
the sequence:

MSA
ij =

{
1, if j ≤ i

0, otherwise.
(23)

This design ensures all model parameters are involved in predicting next sequence token.
Our empirical observations indicate that the transformer architecture is a suboptimal design choice for autoregressive

density estimation on skeleton sequences.

C. Additional discussion
C.1. On hyperparameter sensitivity.
We tune the SeeKer hyperparameters on the validation subset of UBnormal [3], and apply the same settings to ShanghaiTech
and MSAD. We use the early stopping criteria and optimize for maximum validation AUROC. Table 9 reports the perfor-
mance of SeeKer across key hyperparameters: skeleton sequence length, number of hidden layers, and the input expansion
factor that governs the size of the hidden layers. SeeKer consistently achieves competitive performance on the UBnormal
validation set across different hyperparameter choices.



Sequence
length AUROC

Nr. hidden
layers AUROC

Expansion
factor AUROC

8 84.9 1 84.8 1 85.4
16 84.1 2 84.8 2 85.4
24 85.6 3 85.6 3 85.6
32 85.5 4 84.6 4 85.6
48 85.5 5 80.1 5 85.5

Table 9. Validation of the model architecture hyperparameters on the UBnormal validation set shows that minor adjustments in hyperpa-
rameter selection have minimal impact on performance.

C.2. On integrating keypoint detection confidence.
Additionally, during training, we train only on confident skeletons. We leverage the per-keypoint detection confidence and
define the skeleton confidence as the mean confidence over its keypoints. We filter out skeletons with a detection confidence
less than 0.4. This includes occluded skeletons, or skeletons at the border of the frame. Table 10 validates the importance on
training only on skeletons with high detection confidence.

Confidence confidence UBnormal ShangahaiTech
weighting filtering Full HR Full HR

✗ Eq. (7) 75.5 76. 83.7 84.3
✓ Eq. (8) 77.9 78.9 85.5 86.9

Table 10. Training on skeletons with high detection confidence improves the performance in terms of AUROC on UBnormal and Shang-
haiTech test.

C.3. On non-human related anomalies.
Figure 9 illustrates SeeKer anomaly scores for an abnormal event from the UBnormal dataset labeled as non-human related
(smoke). SeeKer accurately flags the corresponding anomalous frames since people exhibit unusual poses in response to this
anomaly. Some works on skeleton-based methods [16, 45] tend to remove non-human related anomalies from the test dataset.
However, these test cases highlight the versatility of skeleton-based methods like SeeKer by demonstrating their ability to
detect anomalies even when they are only indirectly related to human behavior. Moreover, such testing scenarios regularly
appear in relevant benchmarks [3, 34, 62].

Non human-related anomaly: smoke

Figure 9. SeeKer can signal non-human related anomalies (e.g. smoke) as long as there are humans in the scene, since humans strike
unusual poses in such cases (example from UBnormal).

C.4. On computational requirements.
Our method is efficient in terms of computational requirements. Training requires only 0.76 GB of GPU memory and
completes in under 10 minutes on a single NVIDIA GeForce RTX 3090.



D. Limitations
Keypoint extractors. Contemporary skeleton extractors [15] and trackers [54] can struggle in challenging scenarios, such as
dense crowds [37] and poor lighting conditions [48]. This may potentially limit the effectiveness of SeeKer in these cases.
However, future advances in skeleton extractions can be easily incorporated into our framework and thus enhance SeeKer
applicability across diverse conditions.
Potential biases. SeeKer relies on skeleton sequences that are invariant to human-related appearance. Consequently, we
cannot introduce any appearance-related biases but may inherit biases of skeleton extractors.


